Yhtälöiden ja niiden järjestelmien numeerinen ratkaisu koostuu yhtälön tai yhtälöjärjestelmän juurien likimääräisestä määrittämisestä ja sitä käytetään tapauksissa, joissa tarkka ratkaisumenetelmä on tuntematon tai työläs.
Harkitse menetelmiä yhtälöiden ja yhtälöjärjestelmien numeeriseen ratkaisemiseen :
tai
Tehtävän numeerinen ratkaisu voidaan suorittaa sekä suoraan ( samannimisellä menetelmällä ) että optimointimenetelmillä , jolloin ongelma saatetaan sopivaan muotoon. Viimeinen on omistettu artikkelille Gradient Methods .
Näytämme, kuinka voit ratkaista alkuperäisen yhtälöjärjestelmän turvautumatta optimointimenetelmiin . Jos järjestelmämme on SLAE , on suositeltavaa turvautua menetelmiin, kuten Gaussin menetelmään tai Richardsonin menetelmään . Lähdemme kuitenkin edelleen oletukseen, että funktion muoto on meille tuntematon, ja käytämme yhtä iteratiivisista numeerisen ratkaisun menetelmistä . Niiden laajasta valikoimasta valitsemme yhden tunnetuimmista - Newtonin menetelmästä . Tämä menetelmä puolestaan perustuu supistumiskartoituksen periaatteeseen. Siksi jälkimmäisen olemus ilmaistaan ensin.
Määritellään terminologia:
Funktion sanotaan suorittavan supistumiskartoituksen jos
Sitten seuraava päälause pätee:
Banachin lause (supistusmappausten periaate). Jossupistumiskartoitus on, niin:
|
Lauseen viimeisestä kohdasta seuraa, että minkä tahansa supistumiskartoituksiin perustuvan menetelmän konvergenssinopeus on vähintään lineaarinen.
Selitetään parametrin merkitys yhden muuttujan tapauksessa. Lagrangen lauseen mukaan meillä on:
Tästä seuraa, että . Näin ollen menetelmän konvergoimiseksi riittää, että
Peräkkäisten approksimaatioiden yleinen algoritmiOperaattoriyhtälöiden yleisessä tapauksessa tätä menetelmää kutsutaan peräkkäisten approksimaatioiden menetelmäksi tai yksinkertaisen iteroinnin menetelmäksi . Yhtälö voidaan kuitenkin muuntaa supistumismappaukseksi , jolla on sama juuri, eri tavoin. Tämä synnyttää useita erityisiä menetelmiä, joilla on sekä lineaariset että korkeammat konvergenssinopeudet.
Mitä tulee SLAU:hunHarkitse järjestelmää:
Sitä varten iteratiivinen laskenta näyttää tältä:
Menetelmä konvergoi lineaarisella nopeudella, jos
Kaksinkertaiset pystypalkit tarkoittavat matriisinormia .
Optimoimalla alkuperäisen yhtälön muunnos supistumismappaukseksi mahdollistaa menetelmän, jolla on neliöllinen konvergenssinopeus.
Jotta kartoitus olisi tehokkain, on välttämätöntä, että seuraavan iteraation kohdassa , . Etsimme ratkaisua tähän yhtälöön muodossa , sitten:
Käytetään faktaa, että , ja saadaan lopullinen kaava :
Tätä silmällä pitäen supistumisfunktio on muodossa:
Sitten yhtälön numeerisen ratkaisun löytämisalgoritmi pelkistetään iteratiiviseksi laskentamenettelyksi:
Moniulotteinen tapausYleistetään saatu tulos moniulotteiseksi tapaukseksi.
Kun valitaan jokin alkuperäinen approksimaatio , peräkkäiset approksimaatiot löydetään ratkaisemalla yhtälöjärjestelmiä:
,missä .