Tuttin sovituslause

Tuttin sovituslause  on graafiteoreettinen lause, joka antaa välttämättömän ja riittävän ehdon täydellisen sovituksen olemassaololle graafissa ; yleistää häälauseen kaksiosaisille kaavioille ja on Tatta-Bergen kaavan erikoistapaus .

Lauseen väite: Graafilla on täydellinen yhteensopivuus silloin ja vain, jos kullekin pisteiden osajoukolle : n indusoima aligraafi ei enää sisällä toisiinsa liittyviä komponentteja , joissa on pariton määrä pisteitä .

Asentaja William Tutt .

Kirjallisuus