Hadamardin upotuslause

Hadamardin upotuslause  on yksi klassisista pintojen differentiaaligeometrian väitteistä.

Historia

Lause johtuu Jacques Hadamardista ; vaikka lausetta ei muotoiltu hänen artikkelissaan [1] , se voidaan saada yksinkertaisella lisäargumentilla. Tarkan muotoilun ja yleistykset antoi James Stoker , joka myös pitää tämän tuloksen Hadamardin ansioksi. Lisää yleistyksiä antoivat Stephanie Alexander , Mihail Leonidovich Gromov ja muut.

Sanamuoto

Jos euklidiseen avaruuteen upotettu pinta on suljettu, sileä, säännöllinen ja sillä on positiivinen Gaussin kaarevuus , niin se on upotettu pallo ja rajoittaa kuperaa kappaletta.

Muunnelmia ja yleistyksiä

Muistiinpanot

  1. kohta 23 julkaisussa J. Hadamard. "Sur bizonyoses propriétés des trajectoires en dynamique". J. math. puhdasta omenaa. 3 (1897), ss. 331-387.
  2. J. Stoker. Über die Gestalt der positiv gekrümmten offenen Flächen im dreidimensionalen Raume  (saksa)  // Compositio Math. - 1936. - Bd. 3 . - S. 55-88 . Arkistoitu alkuperäisestä 27. marraskuuta 2018.
  3. Alexander, S. Negatiivisesti kaarevien tilojen paikallisesti kuperat hyperpinnat. Proc. amer. Matematiikka. soc. 64 (1977), nro. 2, 321-325.
  4. Gromov M. Kaarevuuden merkki ja geometrinen merkitys. - Izhevsk: Tutkimuskeskus "säännöllinen ja kaoottinen dynamiikka", 2000. - 128 s. — ISBN 5-93972-020-X .