Carl Dunker | |
---|---|
Saksan kieli Karl Duncker | |
Syntymäaika | 2. helmikuuta 1903 |
Syntymäpaikka | |
Kuolinpäivämäärä | 23. helmikuuta 1940 (37-vuotiaana) |
Kuoleman paikka | |
Maa | |
Työpaikka |
Karl Duncker ( saksaksi Karl Duncker ; 2. helmikuuta 1903 Leipzig - 23. helmikuuta 1940 , USA ) on saksalainen psykologi , Gestalt - psykologian näkyvä edustaja , yksi ajattelun merkittävimmistä tutkijoista .
Duncker tunnetaan parhaiten tuottavan ajattelun ja ongelmanratkaisun tutkimuksestaan . Suoritettuaan lukuisia kokeita Dunker esitteli käsitteen ongelman ratkaisun toiminnallisesta merkityksestä ; löysi funktionaalisen kiinnityksen ilmiön , joka koostuu siitä, että tietyllä tavalla käytettyä esinettä on muuten vaikea käyttää.
Vuodesta 1930 hän työskenteli Berliinin psykologisessa instituutissa. Vuonna 1935 hän lähti Saksasta ja työskenteli ensin Cambridgessä F. C. Bartlettin kanssa ja sitten Yhdysvalloissa.
37-vuotiaana hän teki itsemurhan.
Dunckerin mukaan " ajattelu on prosessi, joka ongelmatilanteen ymmärtämisen (ymmärtämisen) kautta johtaa riittäviin reaktioihin." [1] Dunker kutsuu ärsykkeestä vastaustoimintoon johtavaa prosessia oivaltavaksi , jos se määrittää suoraan tämän toiminnan sisällön (toisin kuin ärsykkeen yksinkertaista vapauttamista valmiista reaktiosta). Tämä on tarpeen, kun tällainen toiminta ei johdu suoraan aiemmasta kokemuksista.
Mitä tahansa ongelmatilannetta voidaan tarkastella eri näkökulmista (elementtijoukona tai kokonaisuutena, yhdessä tai toisessa rakenteessa jne.). Tämä selittää oivalluksen mahdollisuuden. Tilanteen psykologinen rakenne muuttuu ongelman ratkaisemisen aikana. Esimerkiksi hahmon ja taustan suhteet muuttuvat: "tilanteen osat ja hetket, joita ei aiemmin joko tunnistettu ollenkaan tai tunnistettiin vain taustalla, ei temaattisesti, yhtäkkiä erottuvat, tulevat pääteemaksi, "hahmoksi" ja päinvastoin” [2] . Myös tilanteen elementtien havaitut (käytetyt) ominaisuudet (funktiot) voivat muuttua. Osa-kokonaisuus-suhde muuttuu: tilanteen elementit, jotka alun perin koettiin osaksi eri kokonaisuuksia, aletaan nähdä yhtenä kokonaisuutena. Uuteen rakenteeseen sisällytettynä elementti saa uusia ominaisuuksia. Se ei kuitenkaan lakkaa olemasta ensimmäisen rakenteen osa; vain näkökulma muuttuu, eli nyt kiinnitämme huomiota niihin ominaisuuksiin, jotka sillä on toisessa rakenteessa, emmekä enää ole kiinnostuneita sen ominaisuuksista ensimmäisen rakenteen elementtinä. "On hyvin todennäköistä, että ihmisten väliset syvimmät erot niin sanotussa "ajattelukyvyssä", "henkisessä kyvyssä" perustuvat tällaisten uudelleenjärjestelyjen suurempaan tai pienempään helppouteen" [3] .
Dunkerin mukaan ongelmanratkaisuprosessi etenee seuraavasti.
Ratkaisun toiminnallinen merkitys ei ole abstrakti, eli yhteinen erilaisille erityistehtäville; "Se syntyy kokonaan annetusta ongelmatilanteesta", kirjoittaa Dunker. Tämän todistaa se, että kun ratkaistaan kahta eri ongelmaa, joilla on yhteinen toiminnallinen merkitys ratkaisulle, ensimmäisen ratkaisu ei auta lainkaan tutkittavia sitä seuraavan ongelman ratkaisemisessa, vaikka he ratkaisisivat ne peräkkäin. .
Ratkaisuprosessi on ongelman ymmärtämisen kehittäminen. Ratkaisun toiminnallinen merkitys on tietty muunnos alkuperäisestä ongelmasta. Ja jokainen tulevan ratkaisun uusi ominaisuus, joka saa toiminnallisen merkityksen ongelman ratkaisemisen aikana, muuttaa toiminnallisen merkityksen uudeksi, tarkemmin ja varmasti esitettäväksi ongelmaksi. Jokaisen myöhemmän ongelman muutoksen yhteydessä ratkaisuprosessi ottaa huomioon yhä enemmän tietyn tilanteen piirteitä ja tunkeutuu vähitellen sen erityisiin olosuhteisiin ja mahdollisuuksiin. Duncker esittää asian näin: "Tietyn ratkaisun lopullinen muoto saavutetaan tyypillisesti polulla, joka johtaa välivaiheisiin, joista jokaisella on suhteessa edellisiin vaiheisiin ratkaisun luonne ja suhteessa seuraaviin. , ongelman luonne."
Analyysi tilanteesta ja tavoitteistaPäätöksen jokaisessa vaiheessa voidaan esittää kysymys konfliktin syistä ("Miksi en saa banaania käsilläni?"), jolloin voit tunkeutua syvemmälle konfliktin luonteeseen ja päästä lähemmäksi ratkaisu ("Koska kädet ovat liian lyhyet"). Dunker kutsuu tätä " konfliktianalyysiksi ".
Tämän "syventymisen" rinnalla voi tapahtua myös "horisontaalista" liikettä useiden funktionaalisten merkityksien välillä, ja palaamalla taas yhteen toiminnallisista merkityksistä, ihminen korjaa epäonnistuneen version ratkaisusta, johon hän aiemmin pysähtyi - Dunkerin mukaan. hän etsii "kysymyksen aikaisemman muotoilun puitteissa muita ratkaisuvihjeitä" tai selventää kysymyksen itse muotoilua.
Tapahtuu, että toiminnallinen merkitys ei edellytä sen erityistä inkarnaatiota, vaan päinvastoin, jokin tilanteen elementti, joka vahingossa osuu silmään (esimerkiksi apinan näkemä keppi) ehdottaa sen toiminnallista merkitystä. Se voi olla myös tulos "tilanteen materiaalin" tietoisesta analyysistä ("Mitä voin käyttää?"). Tällaista tilanteen analysointia tapahtuu erityisen usein, kun ratkaistaan matemaattisia ongelmia todisteeksi.
Kuvatun tilanneanalyysin (eli konfliktin tai materiaalin analyysin ) lisäksi voi tapahtua myös tavoitteen analyysi . Se ilmaistaan kysymyksillä, kuten "Mitä minä itse asiassa haluan?", "Mitä voin tehdä ilman?" jne. ("Haluanko banaanin olevan siellä, missä olen nyt, vai ehkä olen siellä, missä banaani on?"). Tavoite saattaa yleistyä ("Mitä he tekevät, kun he haluavat saada jotain etäältä?"). Tavoiteanalyysi tapahtuu usein todistuksen matemaattisten ongelmien ratkaisussa, kun todistettava muutetaan.
Dunker käytti matemaattisia ja käytännöllisiä ongelmia kokeissaan ja kehotti koehenkilöitä päättelemään ääneen niitä ratkaiseessaan.
Matemaattiset tehtävätDunker havaitsi, että matemaattiset ongelmat ratkaistaan ensisijaisesti tavoiteanalyysin ja tilanneanalyysin avulla. On esimerkiksi selitettävä, miksi kaikki muodon " abcabc " olevat luvut (651 651, 274 274 jne.) ovat jaollisia 13:lla. Tässä on yksi kokeellisista protokollista:
(1) Ehkä jokainen kolmoisluku on jo jaollinen 13:lla? (2) Ehkä on olemassa jokin sääntö numeroiden summaamiseen, kuten jaollisuudessa 9:llä? (3) Tämän täytyy seurata jostain piilotetusta yleisestä rakenteen periaatteesta - numeron ensimmäinen kolmio on 10 kertaa toinen, 591 591 on 591 kertaa 11, ei: kertaa 101 ( kokeilija : "Oikein?"), ei, 1001 Isn:n mukaan eikö 1001 ole jaollinen 13:lla?
Ratkaisuun johtanut päättely (3) alkaa tavoitteen analysoinnilla: väite, että kaikki muodon " abcabc " olevat luvut ovat jaollisia 13:lla, muunnetaan väitteeksi, että jaollisuus 13:lla seuraa lukujen yleisistä ominaisuuksista. muoto " abcabc ". Sitten alkaa tilanteen analysointiprosessi, jonka tarkoituksena on löytää jaetettavuuteen liittyvien lukujen " abcabc " yleiset ominaisuudet. Tämä on tavallinen tapa ratkaista matemaattisia (mukaan lukien geometrisia) todistusongelmia. Ongelma ratkaistaan "kahdelta puolelta" - tilannetta analysoidaan (tavoitteen näkökulmasta; tässä ongelmassa tämä näkökulma koostuu siitä, että kaikkia numeroiden " abcabc " yleisiä ominaisuuksia ei löydy, mutta ne, jotka liittyvät jaettavuuteen) ja tavoitteen analyysi (oleelliset tämän ongelman kannalta sen ehdoilla). Tämä analyysi tehdään suurelta osin satunnaisesti, ja sitä rajoittavat vain mainitut "näkemykset". Lopuksi tapahtuu "sulkeminen", kun tilanteen analyysi ja tavoitteen analyysi johtavat "ratkaisevan suhteen" ymmärtämiseen (jos numeroiden yhteinen jakaja on jaollinen 13:lla, niin itse luvut ovat jaollisia 13:lla ).
On tärkeää, että ratkaiseva suhde syntyy vasta, kun jokin tietty osa siitä on jo löydetty enemmän tai vähemmän satunnaisilla hauilla. Tässä tapauksessa kyseessä olevat osat ovat: luvut " abcabc " ovat jaollisia luvulla 1001; 1001 on jaollinen luvulla 13. Päätöksen aikana kukaan tutkittavista ei esittänyt kysymystä siitä, onko luvuilla " abcabc " yhteinen tekijä, joka jaollinen 13:lla (joka vastaisi ratkaisun toiminnallisen merkityksen löytämistä käytännön tapauksessa ongelmia). Duncker kuitenkin myöntää, että näin voi käydä kokeneille matemaatikoille.
Käytännön tehtävätEsimerkkeinä voidaan mainita useita käytännön Duncker-ongelmia ja niiden ratkaisujen toiminnallisia seurauksia.
Sanakirjat ja tietosanakirjat | ||||
---|---|---|---|---|
Sukututkimus ja nekropolis | ||||
|