Funktion rajoittaminen sen määritelmäalueen osajoukkoon on funktio , jonka määritelmäalue on sama kuin alkuperäinen funktio kaikessa .
Toiminnon rajoitus on yleensä merkitty tai . Siten , ja , tarkoittaa, että ja mille tahansa .
Olkoon kartoitus ja annettu .
Funktiota , joka saa samat arvot kuin funktio , kutsutaan funktion rajoitukseksi (tai toisin sanoen rajoitukseksi ) joukkoon .
Jos funktio on sellainen, että se on rajoitus jollekin funktiolle , niin funktiota puolestaan kutsutaan funktion laajennukseksi joukkoon .
Jollakin funktiolla sitä voidaan laajentaa joukolle loputtomasti , mukaan lukien jatkuvalla tavalla. Jos funktio on kuitenkin analyyttinen funktio osoitteessa , on olemassa ainutlaatuinen analyyttinen jatko .