Phoenix | |
---|---|
fr. Phoenix | |
Markul Nuclear Center ; Phoenix-reaktori on vasemmalla olevassa rakennuksessa. | |
Reaktorin tyyppi | Nopeilla neutroneilla |
Reaktorin käyttötarkoitus | sähkövoimateollisuus , kokeet |
Tekniset tiedot | |
jäähdytysnestettä | Natrium |
Polttoaine | UO 2 - PuO 2 ( MOX ) |
Lämpövoima | 563 MW |
Sähkövoima | 250 MW [1] |
Kehitys | |
Projekti | 1965-1969 |
Yritys-kehittäjä | CEA , Ranska |
Projektin uutuus | BN reaktori |
Rakentaminen ja käyttö | |
Sijainti | Markul |
alkaa | 1973 |
hyväksikäyttö | 1974-2010 |
Reaktorit rakennettu | yksi |
Phoenix Nuclear Reactor ( ranskalainen Phénix , nimetty myyttisen linnun Phoenix [2] mukaan) on ranskalainen natriumjäähdytteinen nopea jalostusreaktori, joka liitettiin verkkoon 13. joulukuuta 1973 Marcoulen ydinkeskuksessa . Sähköteho - 250 MW [3] (vuodesta 2003 vähennetty 140 MW:iin [4] ). Reaktorin lisääntymissuhde oli 1,18 [5] . Tankkaus suoritettiin kahdesta neljään kertaan vuodessa, joka kerta - 140-240 tuntia [6] .
Phoenix oli keskeinen hanke ydinjätteen käsittelyn näkymien tutkimisessa [7] .
Käyttöorganisaatiot ovat Ranskan atomienergiakomissaari (80 % budjetista) ja Electricite de France (20 %).
Phoenix-reaktorin yksikön rakentaminen aloitettiin 1. marraskuuta 1968 , ja se liitettiin Ranskan sähköverkkoon 13. joulukuuta 1973 . 14. heinäkuuta 1974, Bastillen myrskyn päivä , otettiin kaupalliseen käyttöön.
Vuosina 1989 ja 1990 kirjattiin neljä tapausta, joissa reaktorin reaktiivisuus väheni äkillisesti [8] . INES-asteikon mukaan tapaukset saivat toisen tason. Tapahtumien syitä ei voitu selvittää, mikä oli yksi syy Ranskan asteittaiseen kieltäytymiseen nopeiden reaktorien suunnan kehittämisestä [9] . Phoenix pysäytettiin 6. maaliskuuta 2009 , minkä jälkeen sillä suoritettiin useita kokeita joulukuuhun asti [4] . Reaktori suljettiin lopulta 1. helmikuuta 2010 [1] .
Phoenixin edeltäjä oli Rhapsody -reaktori ( fr. Rapsodie ), jonka lämpöteho oli 40 MW ja joka toimi vuosina 1967-1983.
Phoenixin kokemukset huomioon ottaen rakennettiin Superphenix -reaktori ( ranskalainen Superphénix ), jonka lämpöteho oli 3000 MW ja sähköteho 1200 MW, mutta se toimi vain vuosina 1985-1998 [10] ja suljettiin poliittiset syyt [ selventää ] [ 7 ] . Phoenixin pohjalta on tarkoitus rakentaa reaktori saman kompleksin alueelle 2020-luvulla osana ASTRID -ohjelmaa kaupallisten neljännen sukupolven nopeiden neutronireaktorien luomiseksi [11] :22 .
Enrico Fermi sanoi vuonna 1945 : "Ensimmäinen maa, joka kehittää nopean neutronireaktorin, saa kilpailuetua atomienergian käytössä."
Ensimmäinen nopean neutronin ydinreaktori oli amerikkalainen EBR I , joka laukaistiin 20. joulukuuta 1951. Siitä tuli ensimmäinen minkä tahansa tyyppinen ydinreaktori, joka tuotti minkä tahansa määrän sähköä, sitä ei ollut kytketty sähköverkkoon, energia käytettiin pääasiassa valaisemaan rakennuksen, jossa reaktori sijaitsi.
Nopeiden neutronireaktorien rakentamista on tehty eri maissa. 8. tammikuuta 1956 Michiganissa (USA) aloitettiin ydinvoimalan ensimmäisen voimayksikön rakentaminen. Enrico Fermi ( eng. Enrico Fermi Nuclear Generating Station ), joka antoi sähkön verkkoon 8.5.1966. Koereaktorit BR-2 (1956), BR-5 (1959), BR-10 (1973), BOR-60 (1968) rakennettiin Neuvostoliitossa; teollinen BN-350 (1973). Isossa-Britanniassa rakennettiin DFR (1962) ja PFR (1975).
Ranskassa tällaista työtä alettiin tehdä 1960-luvulla. Vaikka pääpanos oli painevesireaktoreissa , myös nopeat neutronireaktorit pidettiin tärkeänä suunnana – tehtävänä oli luoda kaupallisesti tehokkaita nopeita neutronireaktoreita, jotka mahdollistaisivat ydinmateriaalivarastojen tehokkaan käytön satojen vuosien ajan [12 ] .
Nopeille neutronireaktoreille on ominaista se, että ne pystyvät tuottamaan enemmän halkeavaa materiaalia kuin kuluttamaan sitä. Uraanimalmin sisältämiä energiavaroja voidaan siten käyttää noin 70 kertaa tehokkaammin [13] .
Vuoden 1958 loppuun mennessä kehitettiin luonnosversio kokeellisen nopean neutronireaktorin " Rhapsody " ( fr. Rapsodie ) projektista. Sen ominaisuudet vastasivat voimareaktoreita (polttoaine uraanin ja plutoniumdioksidin seoksesta , natriumjäähdytysneste , energiaintensiteetti , materiaalit, lämpötilat ), lukuun ottamatta mahdollisuutta tuottaa sähköä. 28. tammikuuta 1967 se siirrettiin kriittiseen tilaan, ja kaksi kuukautta myöhemmin se nostettiin 20 MW:n suunnittelutehoon [14] .
Ottaen huomioon amerikkalaiset ja brittiläiset saavutukset, päätettiin rakentaa prototyyppivoimareaktori odottamatta Rhapsodyn tuloksia. Esisuunnittelututkimukset 1000 MW:n laitokselle tehtiin vuonna 1964. Nimeä "Phoenix" ehdotettiin asemalle ja se sai yksimielisen hyväksynnän. Vuonna 1965 pääominaisuudet määritettiin. Polttoaine valittiin samalla tavalla kuin Rhapsodyssa - Ranskan plutoniumvarastot eivät riittäneet, ja plutoniumdioksidin ohella päätettiin käyttää rikastettua uraanidioksidia. Sähkötehoksi valittiin 250 MW [15] . Kuten Rhapsodyssa, päätettiin käyttää natriumjäähdytysnestettä. Valittiin integroitu järjestelmä, jossa kaikki primäärijäähdytysjärjestelmän elementit on asennettu samaan tilavuuteen reaktorin kanssa. Vuonna 1967 laadittiin yksityiskohtainen alustava suunnitelma. Siinä oli kolme pumppua ja kuusi välilämmönvaihdinta. Käyttölämpötiloiksi otettiin 400–600 °C. [16]
Vuonna 1969 Ranskan atomienergiakomissio ja Electricite de France allekirjoittivat pöytäkirjan aseman yhteisestä rakentamisesta ja käytöstä (80 % kustannuksista komissaari, 20 % Electricite de France) [17] .
Reaktori päätettiin sijoittaa Markulin keskustan pohjoispuolelle . Muita harkittuja vaihtoehtoja olivat Cadarache (vesivarojen puute) ja La Hague (sijaitsee liian kaukana Cadarachesta, jonne natriumteknologiaan liittyvät tuotantolaitokset keskitettiin). Työt rakennustyömaalla alkoivat lokakuussa 1968. Kaivon mitat olivat 180 x 50 m ja syvyys 11,5 m. Louhintatöitä tehtiin 18 kuukautta [18] .
Rakenteen piirre oli reaktoriosaston maanalaisen osan kiinteän metallivuorauksen käyttö. Verhous koottiin esivalmistetuista lohkoista - metallilevyistä, joiden pinta-ala on 14 m², varustettu jäykistyskulmilla ja kiinnikkeillä, levyjen paksuus vaakasuoralle osalle (alustalle) oli 10 mm, pystysuoralle (seinälle) 5 mm . Rakenne kiinnitettiin erityisillä rekvisiittajärjestelmällä. Metallilevyt kiinnitettiin yhteen hitsaamalla , hitsatut liitokset läpikäytiin radiografisesti ja kapillaarivirheiden havaitsemiseksi. Rakenteen rakentamisen jälkeen rakennettiin rakennuksen betoniperustus tuloksena olevaan metalliverhoukseen. Verhouksen ulkoosan ja maan väliset ontelot täytettiin betonilla ja kumilla.
Reaktorirakennuksen maanpäällinen osa koostui noin 270 esivalmistetusta 25 cm paksusta betonilohkosta, jotka esijännitettiin vaakasuunnassa seinien rakentamisen jälkeen [18] .
Rakentamisen kronologia [19] :
Reaktorin avulla tuotettiin koko käyttöajalta sähköä 24440,402 GWh [20] .
vuosi | Sähköntuotanto | Sähkövoima | KG (%) | KIUM (%) | Toiminta-aika | KTI | ||
---|---|---|---|---|---|---|---|---|
(GWh) | (MW) | Vuosittainen | Kumulatiivinen | Vuosittainen | Kumulatiivinen | (Katsella) | (%) | |
1974 | 958 | 233 | 71,48 | 71,49 | 4716 | 79.6 | ||
1975 | 1308.4 | 233 | 64.1 | 64.1 | 64.1 | 64.1 | 5932 | 67,72 |
1976 | 950,8 | 233 | 46,71 | 55.4 | 46,46 | 55.27 | 4799 | 54,63 |
1977 | 300,8 | 233 | 15.49 | 42.11 | 14.74 | 41,77 | 2120 | 24.2 |
1978 | 1238,8 | 233 | 60,87 | 46,79 | 60,69 | 46.5 | 5905 | 67,41 |
1979 | 1719 | 233 | 83,97 | 54.23 | 84,22 | 54.04 | 7350 | 83.9 |
1980 | 1319 | 233 | 64,71 | 55,98 | 64,45 | 55,78 | 5679 | 64,65 |
1981 | 1421,9 | 233 | 69,93 | 57,97 | 69,66 | 57,76 | 6217 | 70,97 |
1982 | 989.1 | 233 | 48,65 | 56.8 | 48,46 | 56.6 | 5429 | 61,97 |
1983 | 1122 | 233 | 55.12 | 56,62 | 54,97 | 56.42 | 5515 | 62,96 |
1984 | 1414 | 233 | 53,67 | 56.32 | 69.09 | 57,69 | 6206 | 70,65 |
1985 | 1153 | 233 | 60,42 | 56,69 | 56,49 | 57,58 | 6784 | 77,44 |
1986 | 1519.1 | 233 | 73.22 | 58.07 | 74,43 | 58,98 | 6996 | 79,86 |
1987 | 1556.4 | 233 | 71,53 | 59.1 | 76,25 | 60.31 | 7059 | 80,58 |
1988 | 1475,4 | 233 | 71,42 | 59,99 | 72.09 | 61.15 | 6300 | 71,72 |
1989 | 601.175 | 233 | 29.63 | 57,96 | 29.45 | 59.04 | 2678 | 30.57 |
1990 | 982.461 | 233 | 47,91 | 57.34 | 48.13 | 58,36 | 4637 | 52,93 |
1991 | 0 | 233 | 58,64 | 57.41 | 54,93 | |||
1992 | 0 | 233 | 54.22 | 51,87 | ||||
1993 | 34,786 | 233 | 94.15 | 56.32 | 1.7 | 49.23 | 286 | 3.26 |
1994 | 22.603 | 233 | 17.11 | 54.36 | 1.11 | 46,83 | 184 | 2.1 |
1996 | 2.713 | 233 | 0,01 | 51,76 | 0.13 | 44.6 | ||
1997 | 0 | 130 | -0 | 50,43 | 43.45 | |||
1998 | 382,181 | 130 | 58,63 | 50,63 | 33.56 | 43.2 | 3019 | 34.46 |
1999 | 0 | 130 | -0 | 49,39 | 42.13 | |||
2000 | 0 | 130 | 0,01 | 48.2 | 41.12 | |||
2001 | 0 | 130 | -0 | 47.07 | 40.16 | |||
2002 | 0 | 130 | -0 | 45,99 | 39.24 | |||
2003 | 61,822 | 130 | 6.16 | 45.1 | 5.43 | 38.48 | 711 | 8.12 |
2004 | 626.912 | 130 | 55.1 | 45.32 | 54.9 | 38,84 | 4888 | 55,65 |
2005 | 804,53 | 130 | 71.22 | 45,88 | 70,65 | 39.52 | 6341 | 72,39 |
2006 | 591 | 130 | 51.9 | 46 | 51.9 | 39,78 | 4601 | 52.52 |
2007 | 565,14 | 130 | 49,63 | 46.08 | 49,63 | 39,98 | 4452 | 50,82 |
2008 | 664.616 | 130 | 60,23 | 46,36 | 58.2 | 40.35 | 5312 | 60,47 |
2009 | 245.995 | 130 | 22.48 | 45,89 | 21.6 | 39,98 | 1999 | 22.82 |
2010 | 0 | 130 | 45,81 | 39,91 |
Reaktorin käytön aikana havaittiin useita ongelmia. Suurin osa niistä liittyi välilämmönvaihtimien vuotoihin. Seisokkien pituus mahdollisten ongelmien jälkeen johtui siitä, että jokainen reaktorin uudelleenkäynnistys vaati poliittisen päätöksen [11] :17 .
Ongelman tyyppi / sijainti | Osallistuminen seisokkien aikana |
---|---|
Välilämmönvaihtimet | 26,91 % |
Suunniteltu työ | 14,72 % |
Höyrygeneraattorit | 13,46 % |
Polttoaineen ylikuormitus | 11,99 % |
Negatiivisen reaktiivisuuden hyppyjä | 7,92 % |
Turbogeneraattori ja sen järjestelmät | 7,02 % |
Polttoainekokoonpanot | 2,93 % |
Toinen piiri | 2,54 % |
Ohjausjärjestelmät | 2,34 % |
natriumvuotoja | 2,54 % |
Henkilöstövirheet | 0,29 % |
Levätä | 7,34 % |
Suurin osa näistä ongelmista on havaittu muissa tämän tyyppisissä reaktoreissa. Kuitenkin vuosina 1989-1990 reaktorissa havaittiin neljä samantyyppistä hätätilannetta, joita ei tavattu muissa nopeiden neutronien reaktoreissa. 6. elokuuta, 24. elokuuta ja 14. syyskuuta 1989 ja 9. syyskuuta 1990 [8] reaktorin hätäsuoja laukaisi neutronivuon ohjauslaitteiston [11] :17 rekisteröimien jyrkkien reaktiivisuuden vaihteluiden vuoksi .
Tapahtumat kutsuttiin nimellä AURN ( ranska: Arrêt d'urgence par réactivité négative - automaattinen hätäsammutus negatiivisen reaktiivisuuden vuoksi). Ne havaittiin, kun reaktori toimi täydellä teholla tai lähellä sitä (kolme ensimmäistä tapausta - teholla 580 MW, neljäs - 500 MW). Tapahtumahetkellä reaktori oli jatkuvassa käytössä 4-15 päivää. Seisokki tapahtui sen seurauksena, että negatiivinen reaktiivisuus saavutti hätäsuojakynnyksen [11] :18 .
Käsikirjoitus oli sama joka kerta:
Ongelma ei ole saanut lopullista selitystä huolimatta CEA:n vuosia kestäneestä tutkimuksesta. Todennäköisimpänä selityksenä pidetään ilmiötä nimeltä "ydinkukkiminen" tai "ulospäin liike-ilmiö", tilanne, jossa muodonmuutos yhden polttoainenipun koon kasvun muodossa aiheuttaa mekaanista rasitusta ympäristöön. kokoonpanot, mikä johtaa koko sydämen laajenemiseen säteen suuntaan. Kokoonpanojen välisen etäisyyden lievä lisäys johtaa k eff :n jyrkkään laskuun ja vastaavasti negatiivisen reaktiivisuuden kasvuun ja tehon laskuun [21] [11] :21 .