Boltzmannin epätasa-arvo

Boltzmannin  epäyhtälö on epäyhtälö, joka liittyy mihin tahansa jakaumafunktioon , joka täyttää Boltzmannin yhtälön ja törmäysintegraalin .

Sanamuoto

Jokaiselle Boltzmannin yhtälön täyttävälle jakaumafunktiolle epäyhtälö

missä  on törmäysintegraali, on  liikemäärä ja on  hiukkasmassa . Tässä tapauksessa yhtäläisyysmerkki saavutetaan, jos ja vain jos mikä vastaa Maxwell-jakaumaa (tässä ja  ovat skalaarit, ja  ovat vektorivakiot; sisäiset sulut tarkoittavat vektorien skalaarituloa ) [1] .

Todiste

Todiste on kuuluisassa C. Cercignanin kirjassa [2] .

Muistiinpanot

  1. Karniadakis G. M., Beskok A., Aluru N. . Mikrovirrat ja nanovirrat: perusteet ja simulointi . — New York: Springer Science & Business Media , 2005. — xxi + 818 s. - (Interdisciplinary Applied Mathematics, osa 29). — ISBN 978-0387-22197-7 .  - s. 589.
  2. Cercignani, 1978 , s. 93.

Kirjallisuus