Abacus
Kokeneet kirjoittajat eivät ole vielä tarkistaneet sivun nykyistä versiota, ja se voi poiketa merkittävästi 29.9.2020 tarkistetusta
versiosta . tarkastukset vaativat
10 muokkausta .
Abacus ( venäläinen abacus ) - yksinkertainen mekaaninen laite (laskulauta luilla) aritmeettisten laskelmien suorittamiseen , yhden version mukaan ne tulevat kiinalaisesta suanpan- laskentalaitteesta , toisen mukaan ne ovat itse asiassa venäläistä alkuperää.
Edustaa kehystä , jossa on tietty määrä pinnoja; Niihin on kiinnitetty rystyset, joita on yleensä 10 kappaletta. Tilit ovat yksi varhaisimmista laskentalaitteista ja niitä käytettiin laajasti kaupassa ja kirjanpidossa 1900-luvun loppuun asti , kunnes ne korvattiin laskimilla . Nykyään hyvin harvoin käytössä esimerkiksi kylä- ja maaseutukaupoissa [ 1] .
Historia
Vanhin abacus (kaksikymmentä norsunluusta valmistettua tikkua) löydettiin arkeologisten kaivausten aikana Mongoliassa. Analyysin tulosten mukaan havaittiin, että ne tehtiin yli kolme tuhatta vuotta sitten [2] .
Nikolaas Witsen ehdotti aikoinaan Suanpanin ulkoisen samankaltaisuuden perusteella, että abakut tulivat Kiinasta Kultahorden tataarien kautta 1300-luvulla [3] ja jopa nimesi ne ensimmäisenä Venäjällä tuojan. Stroganovs [4] . I. G. Spassky kuitenkin huomauttaa eroista suanpanista , erityisesti sen, että kirjanpidossa käytettiin desimaalilukujärjestelmää [5] . Hän uskoi, että abacus oli peräisin " board account " -laitteesta, joka hänen oletuksensa mukaan syntyi moskoviilaisten osavaltiossa 1500-luvulla [6] .
Ensimmäinen tunnettu maininta tileistä löytyy vuonna 1658 laaditusta "Patriarkka Nikonin talovaraston laskentakirjasta", jossa niitä kutsutaan "tileiksi" [7] [8] .
Numerojärjestelmä ja koodausjärjestelmä
Venäläisissä tileissä käytetään desimaalilukujärjestelmää, jossa jokaisen numeron sisällä on ei- positiivinen unaarikoodaus .
Jokainen luurivi edustaa numeerista numeroa , joka kasvaa ylöspäin neulasta neljällä luulla yhdestä miljooniin (seitsemällä rivillä kokonaislukuja) ja alaspäin vähenee kymmenesosista tuhannesosiin. Kunkin rivin enimmäisarvo on kymmenen kertaa numeron paino (yksikkönumeron enimmäisarvo on 10, jos kaikki ruudut ovat vasemmalla, kymmenillä se on 100 ja niin edelleen). Numeron "sarja" suoritetaan siirtämällä luut sauvan oikeasta reunasta vasemmalle.
Tankoa, jossa on vain 4 luuta, käytettiin laskelmissa puoliksi . Puolet oli yhtä suuri kuin puolet yhdestä rahasta , eli neljännespennistä . Näin ollen neljä rystyset vastasivat yhtä kopekkaa [9] . Tätä sauvaa käytettiin myös punnan muuntamiseen pudoiksi (1 puuta = 40 puntaa). Tämä sauva voi myös toimia tilille kirjoitetun luvun kokonaisluvun ja murto-osien erottimena, eikä sitä käytetä laskelmissa.
Näin ollen enimmäismäärä, joka voidaan pisteyttää abakuksessa, jossa on seitsemän riviä kokonaislukuja, on 11 111 111,110 .
Kun yhdeksään luuhun on lisätty yksi bitti kymmenestä luusta, suoritetaan siirtoyksikön kirjoittaminen seuraavaan bittiin, joka koostuu kolmesta toimenpiteestä:
- siirtämällä yksi rystys vasemmalle, kymmenes rystys lisätään yhdeksään rystykseen;
- siirry oikealle kaikista kymmenestä rystysta, edellinen bitti nollataan;
- siirtymällä rystysen vasemmalle seuraavaan numeroon, siirtoyksikkö tallennetaan.
Noudattamalla tätä sääntöä lukujen epäselvä esitys suljetaan pois. Lukujärjestelmien teorian näkökulmasta toimintoihin eksponentiaalisessa yksikkökoodatussa desimaalipaikkalukujärjestelmässä yhdeksän luuta riittää, kuten Ya. I. Perelman myös kirjoittaa [10] , kun taas siirron kirjoittamisen operaatio yksikkö suoritettaisiin kahdessa toiminnossa kolmen toiminnon sijaan:
- siirtymällä yhdestä rystysta vasemmalle seuraavaan bittiin, siirtoyksikkö tallennetaan;
- siirtämällä yhdeksän luuta oikealle, edellinen numero nollataan;
mutta laskemisen helpottamiseksi (erityisesti saadakseen kätevästi lisäyksen 10:een, joka on välttämätön vähennyksen siirtämiseksi) venäläisissä tileissä valittiin kymmenen rystysten lukumäärä.
Laskentasäännöt
Yleisiä huomioita
Tilien avulla voit niiden rajoissa suorittaa kaikki aritmeettiset perustoiminnot: yhteen-, vähennys-, kerto- ja jakolasku . Käytännössä on kuitenkin kätevää ja nopeaa vain lisätä ja vähentää: mielivaltaisella luvulla kertominen on melko monimutkaista, ja jakaminen yleensä vie todennäköisesti enemmän aikaa kuin saman toiminnon suorittaminen paperille " sarakejaolla " . . On kuitenkin olemassa melko suuri määrä erikoistapauksia , joissa abacus on varsin soveltuva kerto- ja jakolaskuihin.
Lisäksi on otettava huomioon seuraavat seikat:
- Tilejä ei periaatteessa ole tarkoitettu negatiivisten lukujen manipulointiin. Siksi kaikki toiminnot tulisi vähentää positiivisiksi numeroiksi, ja etumerkki tulee tarvittaessa yksinkertaisesti ottaa huomioon erikseen.
- Kerto- ja jakolaskuoperaatioissa on melko hankalaa ottaa huomioon desimaalierottimen sijainti molemmille operandiille . Seurauksena on, että suoritettaessa desimaalimurtolukuja kertomalla ja jakamalla joko vain toinen tai molemmat operandit pelkistetään kokonaisluvuksi, eli niissä oleva desimaalierotin jätetään huomiotta. Kun toiminto on valmis, desimaalierottimen paikka palautetaan manuaalisesti.
"Aseta" numerot
Numeroiden esitys tileillä ja valintajärjestys on kuvattu yllä. On vain huomattava, että käytännön laskelmissa ei useinkaan ole tarpeen noudattaa sääntöä luvun numeroiden sijainnista johdoissa (eli yhden numeron sijoittaminen epäonnistumatta langan eteen, jossa on neljä luuta). . Lisäksi laskentaprosessissa on joskus kätevää numeron uudelleen kirjoittamisen sijaan yksinkertaisesti siirtää henkisesti kokonaisluvun ja murto-osien erotin toiseen paikkaan.
Joissakin abacus-laskelmien käsikirjoissa suositellaan seuraavaa "parannusta": poraa sarja pieniä reikiä vasemmalla olevan helmitaulun runkoon, jotka sijaitsevat vastapäätä johtojen välisiä rakoja. Laskettaessa esine - esimerkiksi naula tai suoristettu paperiliitin - sijoitetaan reikään vastapäätä sitä rakoa, joka tällä hetkellä erottaa yksiköt ja kymmenesosat. Siten desimaalierottimen paikka on milloin tahansa selkeästi merkitty ja sitä voidaan helposti muuttaa.
Lisäys
Yhden mahdollisen tavan mukaan tilien lisäys suoritetaan "alhaalta ylöspäin" (alemmista numeroista vanhempiin). Ensimmäinen termi "kirjoitetaan" tileille, minkä jälkeen bitti kerrallaan vähiten merkitsevästä numerosta suurimpaan suoritetaan seuraavat toimet:
- Luokkaa vastaavalla langalla heitetään vasemmalle niin monta luuta kuin on toisen termin vastaavassa kategoriassa yksiköitä.
- Jos langalla ei ole tarpeeksi luita ensimmäisen toimenpiteen suorittamiseen, niin vasemmalle langalle jätetään niin monta luuta kuin niitä ei ollut tarpeeksi, ja seuraavassa (korkeammassa) langassa yksi luu heitetään vasemmalle.
- Jos toiminnon seurauksena (sekä ensimmäinen että toinen ja tämä) vasemmalla olevassa langassa on 10 luuta, kaikki tämän langan luut heitetään oikealle ja seuraavalla (korkeammalla) lanka, yksi luu heitetään lisäksi vasemmalle.
Kun toiminnot on suoritettu kaikilla numeroilla, tilien "soitettu" numero on lisäyksen tulos.
On myös toinen tapa: lisääminen suuremmista numeroista pienempiin [11] - katso animaatio.
Vähennys
Tilien vähennys suoritetaan "ylhäältä alas", eli suurimmista numeroista pienimpiin. Koska tilit eivät sovellu työskentelyyn negatiivisten lukujen kanssa, on aina tarpeen vähentää pienempi positiivinen luku suuremmasta positiivisesta luvusta. Jos haluat vähentää suuremman pienestä, numerot on vaihdettava ja merkki "mielessä" tulee jättää.
Tileillä "kirjoitetaan" vähennys, jonka jälkeen suoritetaan bitti kerrallaan merkittävimmästä numerosta nuorimpaan:
- Luokkaa vastaavalla langalla heitetään oikealle niin monta luuta kuin on yksiköitä aliosan vastaavassa kategoriassa.
- Jos langalla ei ole tarpeeksi luita ensimmäisen toimenpiteen suorittamiseen, purkaus siirretään: (10 - n ) luut jätetään vasemmalle, missä n on "puuttuva" luiden lukumäärä (jotta ei tehdä toista vähentämällä mielessäsi, voit siirtää tämän langan kaikki kymmenen luuta vasemmalle, sitten hylätä puuttuvan määrän luita), ja yllä olevasta langasta yksi luu hylätään oikealle
- Jos siirron aikana korkeinta numeroa vastaavassa langassa ei ole tarpeeksi luita, siirto suoritetaan seuraavaan (jopa vanhempaan) numeroon ja niin edelleen, kunnes jollakin johtimella on tarpeeksi luita. Joten esimerkiksi vähennettäessä (1001 − 3), ensimmäiset 8 luuta jätetään vähiten merkitsevän numeron langalle ja vaaditaan siirto toiseen numeroon, sitten kolmanteen ja vasta sen jälkeen riittää. kuoppia neljännen numeron johdossa toimenpiteen suorittamiseksi loppuun.
Kertominen
Kertominen yhdellä numerolla voidaan yleensä korvata lisäämällä kertoja itseensä sopiva määrä kertoja. Kokonaislukujen moninumeroiset luvut kerrotaan bitti kerrallaan, kuten "sarake kertolasku":
- Kerroin on se kahdesta luvusta, joka sisältää enemmän nollasta poikkeavia numeroita.
- Kerroin lisätään itseensä niin monta kertaa kuin kertoimen alimmassa (ensimmäisessä) numerossa on yksiköitä.
- Kertoimen jokaiselle seuraavalle kertoimen numerolle kerroin lisätään tilillä jo olevaan numeroon vastaava määrä kertoja, mutta yhden numeron verran ylöspäin. Toisin sanoen kymmenien numeroiden kohdalla summaus suoritetaan siirrolla yhdellä numerolla, sadat - kahdella ja niin edelleen.
- Jos kertoimen vastaava numero on nolla, ei tietenkään suoriteta yhteenlaskua, vaan yksinkertaisesti siirretään yksi johdin ylöspäin ja siirrytään seuraavaan numeroon.
- Kun kaikki kertoimen nollasta poikkeavat numerot lasketaan yhteen, tilille saadaan kertolaskutulos. Tässä tapauksessa desimaalierottimen paikka on otettava huomioon siinä paikassa, jossa se oli ensimmäisten lisäysten aikana (eli desimaalierottimen siirtymät huomioidaan vain välioperaatioissa).
Jos ei-kokonaislukuja kerrotaan, toimenpide suoritetaan täsmälleen samalla tavalla (laskutoimitukset suoritetaan kokonaisluvuilla, desimaalierottimet yksinkertaisesti jätetään huomiotta). Desimaalierotin asetetaan oikeaan paikkaan manuaalisesti tulosta kirjoitettaessa.
Algoritmin kömpelyydestä huolimatta kehittyneellä taidolla ajanhyöty paperilla laskettuun verrattuna voi olla merkittävä.
Jaosto
Jako yleensä korvataan vähennyksellä. Yleinen algoritmi kokonaislukujen jakamiseen on seuraava:
- Osinko kirjoitetaan niiden alareunassa oleville tileille.
- Osingon etunumeroista valitaan sen kokoinen ryhmä, että sen muodostama luku on suurempi kuin jakaja, mutta pienempi kuin jakaja kerrottuna kymmenellä. Desimaalierotin siirretään henkisesti tämän ryhmän vähiten merkitsevään numeroon.
- Jakaja vähennetään valitusta numerosta (ottaen huomioon asetettu erotin), kunnes vähennetty on pienempi kuin jakaja. Jokaisella onnistuneella ylälangan vähennyksellä pisteet siirtyvät vasemmalle yhden luun verran.
- Kun vähennys on suoritettu, desimaalierotin siirretään henkisesti yhden johdin alaspäin. Lisäksi jakajan vähennys toistetaan uudelle vähennetylle, ja tulos syötetään seuraavaan (toiseen, sitten kolmanteen jne.) johtimeen.
- Edellinen kappale toistetaan, kunnes tilillä valittu numero loppuu tai kunnes tuloksesta on saatu tarvittava määrä numeroita.
- Ylemmille johtimille, kun kaikki toiminnot on suoritettu, jaon tulos kirjoitetaan. Desimaalierottimen paikka on sama kuin osingon.
Jos osinko on jakajan kerrannainen, toimenpide päättyy, kun osingon vähiten merkitsevä desimaali on saavutettu ja kaikki luut, paitsi ne, joille tulos kertyy, ovat oikealla. Jos ei, niin jaon loppuosaa vastaava numero jää tileille. Tarvittaessa saat murtotuloksen desimaalit, kunhan tileillä on tarpeeksi johtoja (kun desimaalierotin ei ole missään siirrettävä alas, voit siirtää kertynyttä jäännöstä keinotekoisesti korkeammalle jakamisen jatkamiseksi; näin voi saada jopa 7-8 numeroa tuloksesta).
Esimerkiksi laskemme 715/31:
- Keräämme tileille 715 alaosaan (langan yläpuolella neljällä rystysellä).
- Valitsemme ensimmäisistä numeroista luvun, joka on suurempi kuin 31 ja pienempi kuin 310 - nämä ovat kaksi numeroa, 71. Asetamme desimaalierottimen yksikön perään.
- Vähennä 31 luvusta 71. Tämä voidaan tehdä kahdesti. Ylälangalla hylkäämme kaksi luuta vasemmalle. Loppuosa on 9.
- Jäljellä on 9, mikä on vähemmän kuin 31. Siirrä henkisesti desimaalierotinta yksi johto alaspäin. Seuraava vähennys on 95.
- Vähennä 31 luvusta 95. Tämä voidaan tehdä kolme kertaa. Ylhäältä toisessa johdossa hylkäämme kolme rystystä vasemmalle. Loppuosa on 2.
- 2 on pienempi kuin 31. Osingon kokonaisluku on käytetty kokonaan. Jos ratkaisun saaminen riittää jäännöksellä, voit korjata tuloksen: 2 ja 3 kirjoitetaan kahdelle ylimmälle johdolle, 2 jää osinkoon, eli tulos on 23 ja 2 loppuosassa, tai .
- Jos tarvitaan seuraavat desimaalit, jatkamme operaatiota edelleen: siirrämme desimaalierotin yhden numeron alaspäin, mutta tuloksena saadaan 20, mikä on pienempi kuin 31. Siksi jätämme nollan kolmanteen johtimeen ylhäältä. (kaikki rystyset oikealla) ja siirrä erotin alas toiseen johtoon.
- Vähennä 31 luvusta 200 - kuusi kertaa. Neljännelle langalle on kerrostettu 6.
- Siirrä desimaalierotinta vielä yksi numero. 140 tiliä.
- Vähennä 31 luvusta 140. 4 on sijoitettu viidenteen lankaan.
- Tileille jää 16. Numeroita ei ole minnekään siirrettävä - johdot ovat loppuneet (yleensä tilien 4-luuisen langan alapuolella on vain kolme numeroa). Koska 16 on enemmän kuin puolet luvusta 31, seuraava numero on 5 tai enemmän, joten voit korjata pyöristetyn tuloksen: 23.065. Jos tarvitset kiireellisesti tuloksen seuraavat numerot, sinun on siirrettävä loput 16:sta ylöspäin ja jatkettava laskemista siitä eteenpäin.
Kuten kertolaskussa, desimaalimurtolukuja jaettaessa argumentit korvataan kokonaisluvuilla ja laskutoimitukset suoritetaan täsmälleen samassa järjestyksessä, ja desimaalierotin siirretään manuaalisesti tuloksen oikeaan paikkaan.
Yksinkertaistettuja temppuja kerto- ja jakolaskuihin
Mielivaltainen kertolasku ja varsinkin tilien jakaminen ei ole kovin kätevää. On kuitenkin useita erikoistapauksia, joissa nämä toiminnot suoritetaan paljon helpommin:
- Kertominen ja jako 10:llä korvataan siirtämällä numero yksi numero ylös tai alas. Tässä tapauksessa tietuetta ei tarvitse tosiasiallisesti siirtää - riittää, kun siirrät henkisesti numeron kokonaisluvun ja murto-osien erotinta yhdellä johdolla, vastaavasti, alas tai ylös. Tilien laskemisen käsikirjoissa suositeltiin laskelmia tehdessä pitää vasemman käden sormea tilien kehyksessä vastapäätä yksikköä ja kymmenesosaa vastaavien lankojen välistä rakoa tai merkitä nykyinen sijainti. desimaalierotin jollakin improvisoidulla tavalla (painike, neilikka, joka on työnnetty erityisesti kehykseen tehtyihin reikiin, jne.).
- Kertominen kahdella korvataan lisäämällä luku itseensä: .
- Kolmella kertominen merkitsee yhteenlaskua kahdesti: .
- Kerro 4:llä - tuplaa kahdesti: .
- Kerro 5:llä - kerro 10:llä ja jaa 2:lla: .
- Kerrotaan 6:lla - kerrotaan 5:llä ja lisätään alkuperäinen numero :.
- Kertominen 7:llä - kolminkertainen alkuperäisen luvun tuplaaminen ja vähentäminen :.
- Kertomalla 8:lla on kolminkertaistaminen: .
- Kertominen 9:llä - kertominen 10:llä ja alkuperäisen luvun vähentäminen: .
- Jakaminen kahdella tehdään vähiten merkitsevistä biteistä merkittävimpiin. Jokaisella langalla puolet olemassa olevista luista heitetään pois. Jos langalla on pariton määrä luita, myös "ylimääräinen" luu hylätään ja viisi muuta luuta siirretään vasemmalle alla olevaan johtoon (vähiten merkitsevällä numerolla). Esimerkiksi kun jaetaan 57 kahdella, yksikkönumerossa on pariton luku, joten 4 luuta hylätään (3 jää) ja 5 lisätään kymmenesosaan, jolloin kolme viidestä kuopasta hylätään. kymmenessä numerossa - kaksi jää, ja lisäksi yksinumeroiseen lisätään 5 - siitä tulee 8. Eli oikea vastaus on: 28.5.
- Jako 3:lla korvataan kertomalla alkuperäinen luku kolmella ja lisäämällä tulos itseensä peräkkäin alaspäin siirtymällä niin monta kertaa kuin tuloksessa tarvitaan. Kun siirretään "tilin rajojen ulkopuolelle", lisätty luku pyöristetään. Lisäyksen tulos on jaettava 10:llä. (Käytetty tosiasia ).
- Jakaminen 4:llä on kaksinkertainen jakaminen 2:lla.
- Viidellä jakaminen on jakamista 10:llä ja kertomista kahdella.
- Jako 6:lla on peräkkäinen jako 2:lla ja 3:lla.
- Jako 7:llä suoritetaan yleisen algoritmin mukaisesti (bittikohtainen vähennys seitsemästä).
- Jakaminen 8:lla korvataan jakamisella kahdella kolme kertaa.
- Jakaminen 9:llä tehdään lisäämällä luku itseensä, bitti kerrallaan siirtymällä alaspäin niin monta kertaa kuin tuloksessa tarvitaan. Lisäyksen tulos jaetaan 10:llä. (Käytetään suhdetta ).
- Kertominen ja jako millä tahansa kahden potenssilla tehdään vastaavasti kaksinkertaistamalla tai jakamalla kahdella.
- Kertominen kahden identtisen numeron kaksinumeroisella luvulla " NN " (11, 22, 33, 44 jne.) korvataan kertolaskulla ja yhteenlaskolla siirrolla:
- Ensin alkuperäinen arvo kerrotaan N :llä millä tahansa sopivalla tavalla.
- Sitten desimaalierotin siirretään bittiä alaspäin ja kertolaskun tulos lisätään itseensä, mutta yhden langan verran alaspäin (lisääminen alaspäin on kätevämpää, koska yhteenlasku tapahtuu alhaalta ylöspäin, ja lisätty määrä luita näkyy aina yhtä lankaa korkeammalla - sitä ei tarvitse muistaa).
Usein on mahdollista yksinkertaisten manipulaatioiden avulla pelkistää laskettu operaatio kerto- ja jakotapausten yhdistelmäksi. Esimerkiksi 25:llä kertominen voidaan korvata kertomalla 100:lla ja jakamalla 2:lla 2:lla. Kun toinen tai molemmat operandit ovat lähellä "käteviä" lukuja, voit yhdistää kerto- ja jakolaskutapaukset yhteen- ja vähennyslaskuihin. Mutta tällaisten temppujen mahdollisuus riippuu voimakkaasti laskimen koulutustasosta. Itse asiassa abakuksella laskemisen taito piilee kyvyssä supistaa tarvittava laskelma helposti laskettavien elementtien yhdistelmäksi.
Esimerkki tilistä
Tunnettu esimerkki tilien käytöstä ongelmien ratkaisemiseen on Anton Tšehovin tarinassa " Tutor " [12] . Gymnasian opettaja Egor Alekseich Ziberov kysyi nuorelta Petya Udodovilta tehtävän:
Kauppias osti 138 arshinia mustaa ja sinistä kangasta 540 ruplalla. Kysymys kuuluu, kuinka monta arshinia hän osti molemmat, jos sininen maksoi 5 ruplaa ja musta 3 ruplaa.
Petya ei voinut ratkaista sitä. Opettaja itse ei kuitenkaan pystynyt selviytymään, vaikka hän tiesi, että "tehtävä itse asiassa on algebrallinen " ja "se voidaan ratkaista x:n ja y:n avulla". Todellakin, jos oletetaan, että - tämä on sinisen kankaan määrä ja - mustan, voimme muodostaa seuraavan yhtälöjärjestelmän :
Kun se on ratkaistu, saamme vastauksen: eli 75 arshinia mustaa kangasta ja 63 arshinia sinistä.
Tällainen ratkaisu tähän ongelmaan johtaa kuitenkin sen sisäisen logiikan menettämiseen. Pojan isä, eläkkeellä oleva maakuntasihteeri Udodov, esitti toisen ratkaisun:
"Voit ratkaista sen ilman algebraa", sanoo Udodov, ojentaa kätensä helmitaululle ja huokaa. "Tässä, anna minun nähdä...
Hän napsauttaa helmitaulua ja saa 75 ja 63, joita hän tarvitsi.
- Tässä, herra... mielestämme oppimattomalla tavalla.
Itse "oppimatonta" ratkaisua ei Tšehov kerro tarinassa, mutta se on helposti rekonstruoitavissa, koska tehtävässä on logiikkaan perustuva standardiaritmeettinen ratkaisu, joka koostuu kuuden aritmeettisen operaatiosta . Oletetaan, että kaikki ostettu kangas oli sininen. Silloin 138 arshinin erä maksaisi 690 ruplaa ( ). Mutta tämä on 150 ruplaa ( ) enemmän kuin todellisuudessa maksettiin. 150 ruplan "ylikulutus" osoittaa, että juhlissa oli halvempaa, mustaa kangasta - 3 ruplaa per arshin. Tätä kangasta on niin paljon, että kahden ruplan erosta ( ) saamme 150 "ylimääräistä" ruplaa. Eli 75 arshinia ( ) mustaa kangasta. Nyt löydämme sinisen kankaan määrän: 63 arshinia ( ).
Udodovin suorittama "tilien napsauttaminen" näytti tältä:
- Numero 138 on "pisteytetty" tileillä: yksi luu ensimmäisessä langassa, kolme toisessa, kahdeksan kolmannessa.
- Se kerrotaan 138:lla 5:llä. Laskennan yksinkertaistamiseksi se ensin kertoo 138:lla 10:llä tekemättä mitään manipulaatioita, yksinkertaisesti siirtämällä kaikki luut henkisesti yhden rivin korkeammalle, minkä jälkeen se jaetaan kahdella: jokaisessa langassa, alkaen alhaalta puolet luista on taitettu taaksepäin. Kolmannella langalla, johon on sijoitettu kahdeksan luuta, neljä heitetään takaisin; kaksi kolmesta luusta taitetaan taaksepäin keskimmäisellä langalla, kun taas yksi niistä korvataan henkisesti kymmenellä alemmalla ja jaetaan kahtia - eli viisi luuta lisätään seuraavan langan luihin; yksi luu poistetaan ylälangasta ja lisätään viisi toisen langan luihin. Tämän seurauksena ylälangassa ei ole luita, toisessa on kuusi ja kolmanteen yhdeksän. .
- 540 vähennetään luvusta 690: toisesta langasta poistetaan viisi luuta, kolmannesta neljä. .
- 150 jaetaan puoliksi (menetelmä - katso yllä). .
- 75 vähennetään luvusta 138. 138 "rekrytoidaan" uudelleen, hylätään toisella langalla, mutta niitä on vain kolme. Neljä ei riitä, joten kuusi luuta jää lankaan (jos Udodov on liian laiska vähentämään mielessään neljä kymmenestä, hän voi heittää koko kymmenen vasemmalle toiselle langalle ja hylätä siitä "alivähennetty" neljä luuta ), ja yksi luu poistetaan ensimmäisestä langasta. Nyt kolmannessa langassa kahdeksasta luusta viisi on heitetty pois. .
Opettajia suositellaan käyttämään matemaattisia tehtäviä taideteoksista, mukaan lukien Tšehovin tarinasta "Tutor" [13] [14] peruskoulun tunneilla .
Katso myös
Muistiinpanot
- ↑ Uutisia klo 20.00 alkaen 1.12.2021 - YouTube
- ↑ Yu Sitsko. Vanhin abacus // "Komsomolskaja Pravda", 12. syyskuuta 1986.
- ↑ Spasski, 1952 , s. 272.
- ↑ Spasski, 1952 , s. 417.
- ↑ Spasski, 1952 , s. 270.
- ↑ Spasski, 1952 , s. 369-370.
- ↑ Patriarkka Nikonin talovaraston laskentakirja // "Vremennik Moskovan keisarillisen Venäjän historian ja muinaisten esineiden seurasta", kirja 15 . - M. , 1852. - S. 117.
- ↑ Spasski, 1952 , s. 320.
- ↑ Antiikin tietokoneet (pääsemätön linkki) . Arkistoitu alkuperäisestä 27. heinäkuuta 2009. (määrätön)
- ↑ Ja. I. Perelman. Viihdyttävä aritmetiikka. Tehtävä numero 7 . Haettu 27. elokuuta 2010. Arkistoitu alkuperäisestä 17. heinäkuuta 2011. (määrätön)
- ↑ Kiryushin, 1925 , s. 17-23.
- ↑ Perelman Ya. I. Viihdyttävä aritmetiikka: Arvoituksia ja uteliauksia numeromaailmassa. - M.-L.: Gonti, 1938. - S. 30-33.
- ↑ Sergeeva L. A. Matematiikan oppituntien esteettinen potentiaali peruskoulussa // Nykyaikaisen ala-asteen koulutus- ja koulutustoimintojen toteuttaminen: sähköinen artikkelikokoelma, joka perustuu X-yleisvenäläisen tieteellisen ja käytännön konferenssin "Pedagogiset lukemat muistiin" materiaaleihin professori A. A. Ogorodnikovista" (6. helmikuuta 2019 kaupunki, Perm, Venäjä) / yhteensä. toim. L. V. Selkina; Permin osavaltion humanitaarinen ja pedagoginen yliopisto. - Perm, 2019. - S. 187-188.
- ↑ Shvetsova R. F. Kirjalliset teokset matematiikan tunneilla ala-asteella // Liittovaltion koulutusstandardin käyttöönotto peruskoulussa: innovatiivisia lähestymistapoja koulutusprosessin järjestämiseen: kokoelma republikaanien tieteellisen ja metodologisen konferenssin julkaisuja (28. maaliskuuta 2019) , Jakutsk). - Kirov: MCITO, 2019. - S. 109.
Kirjallisuus
Linkit