Yhdistää
Uudelleenyksiköt ( eng. repunit , toistuvasta yksiköstä - toistuva yksikkö) [1] - luonnolliset luvut , joiden tietue peruslukujärjestelmässä koostuu yhdestä yksiköstä. Desimaalilukujärjestelmässä uudelleenyksiköt merkitään : , , jne., ja niiden yleinen muoto on:
![R(b,n)](https://wikimedia.org/api/rest_v1/media/math/render/svg/0e47c52dfb313139466b35217d4b03983f0e2f0f)
![b > 1](https://wikimedia.org/api/rest_v1/media/math/render/svg/0041c936812fb809c4511e31eb0404de9d48511b)
![R_n](https://wikimedia.org/api/rest_v1/media/math/render/svg/08a51eb87e8de827a6df940f756f9ab254cb336b)
![R_{1}=1](https://wikimedia.org/api/rest_v1/media/math/render/svg/152a9e6e85d65379fa3d02aed12c8f51f63b156e)
![R_{2}=11](https://wikimedia.org/api/rest_v1/media/math/render/svg/d120d291f6109b94ceaeaee9e6e4941abb7b4f25)
![R_{3}=111](https://wikimedia.org/api/rest_v1/media/math/render/svg/0c4113c405fc0ff4ea64f92cdb9aef053d182550)
Uudelleenyksiköt ovat uusintanumeroiden erikoistapaus .
Desimaalilukujen faktorointi
( Ruskean väriset tekijöihin jaottelujen alkuluvut tarkoittavat, että ne ovat uusia alkulukuja tekijöihin jakamisessa R n , jotka eivät jaa R k :tä kaikille k < n [2] )
R1 = _ |
yksi
|
R2 = _ |
yksitoista
|
R3 = _ |
3 37 _
|
R4 = _ |
11 101
|
R5 = _ |
41 271 _
|
R6 = _ |
3 7 11 13 37
|
R7 = _ |
239 4649 _
|
R8 = _ |
11 73 101 137
|
R9 = _ |
3 2 37 333667
|
R10 = _ |
11 41 271 9091
|
|
R11 = _ |
21649 513239 _
|
R12 = _ |
3 7 11 13 37 101 9901
|
R13 = _ |
53 79 265371653 _ _
|
R14 = _ |
11 239 4649 909091
|
R15 = _ |
3 31 37 41 271 2906161
|
R16 = _ |
11 17 73 101 137 5882353
|
R17 = _ |
2071723 5363222357 _
|
R18 = _ |
3 2 7 11 13 19 37 52579 333667
|
R19 = _ |
1111111111111111111
|
R20 = _ |
11 41 101 271 3541 9091 27961
|
|
R21 = _ |
3 37 43 239 1933 4649 10838689
|
R22 = _ |
11 2 23 4093 8779 21649
513239 _ _ |
R23 = _ |
11111111111111111111111
|
R24 = _ |
3 7 11 13 37 73 101 137 9901 99990001
|
R25 = _ |
41 271 21401 25601 182521213001 _
|
R26 = _ |
11 53 79 859 265371653 1058313049
|
R27 = _ |
3 3 37 757 333667 440334654777631
|
R28 = _ |
11 29 101 239 281 4649 909091 121499449
|
R29 = _ |
3191 16763 43037 62003 77843839397 _ _ _ _
|
R30 = _ |
3 7 11 13 31 37 41 211 241 271 2161 9091 2906161
|
|
Ominaisuudet
- Vuodelta 2022 tunnetaan vain 11 yksinkertaista yksikköä n :lle, joka on yhtä suuri kuin [3] :
![R_n](https://wikimedia.org/api/rest_v1/media/math/render/svg/08a51eb87e8de827a6df940f756f9ab254cb336b)
2 ,
19 ,
23 ,
317 , 1031 , 49081 , 86453 , 109297 , 270343 , 5794777 , 8177207 (
OEIS - sekvenssi A004023 )
On selvää, että alkulukuindeksit ovat myös alkulukuja.
- Tuloksena kertolaskulla , saadaan palindromiluku , joka on muodoltaan numeroita, joiden keskellä on numero.
![R_{i}\cdot R_{j}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b76e1d24d1d5cfb22d9160e845ed85250cbe56be)
![9\geq i\geq j](https://wikimedia.org/api/rest_v1/media/math/render/svg/d99cbd543f9e703b8dd77bf72e26381695d7dd14)
![(12\lpistettä j\lpistettä 21)](https://wikimedia.org/api/rest_v1/media/math/render/svg/7d7e6272f5c70b3d6db588e97f440e897a969c5a)
![i+j-1](https://wikimedia.org/api/rest_v1/media/math/render/svg/71c5db566626ac9c5438a35f969a9140f6f42fd0)
![j](https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0)
- Repunit 11 111 111 111 111 111 111 on itse luotu numero .
- Jokainen uudelleenyksikön positiivinen kerrannainen sisältää vähintään n nollasta poikkeavaa numeroa.
![R_n](https://wikimedia.org/api/rest_v1/media/math/render/svg/08a51eb87e8de827a6df940f756f9ab254cb336b)
- Uudelleensumma peräkkäisten neliöiden summana. Luku 1111 voidaan esittää useiden peräkkäisten luonnollisten lukujen neliöiden summana: . Ilmeisesti laite täyttää myös tämän ehdon. Muita vastaavia yksiköitä, joiden pituus on enintään 251, ei ole.
![1111=\sum \limits _{{n=11}}^{{16}}n^{2}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ed476b8c3409d55c4065da1ab03f01df581cf431)
Kulttuurissa
Asteroidi (11111) Repunit on nimetty Repunitesin mukaan, jonka sarjanumero on .
![{\displaystyle R_{5}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e4a18879dca7e62ef35d2bd35dd96747df96199d)
Muistiinpanot
- ↑ Karpushina, 2013 , s. 134.
- ↑ OEIS - sekvenssi A102380 _
- ↑ OEIS - sekvenssi A004023 _
Kirjallisuus
- Yates S. Jälleenyksiköiden mystiikka - Math. Mag., 1978, 51, 22-28.
- Yeats S. Repunites and Decimal Periods - World, 1992.
- Kordemsky B. Tunti uusien perheelle // Kvant . - 1997. - Nro 5 . - S. 28-29 .
- N. M. Karpushina. Formaatti poissa. Viihdyttävä matematiikka: mielen voimistelu vai yllätyksen taide?. - M . : ANO "Science and Life" -lehden toimitus, 2013. - S. 115, 132-149. — 288 s. - ISBN 978-5-904129-07-1 .