Avaruus ( fyysinen [1] , tai tavallinen avaruus ) on jokapäiväisen maailmamme kolmiulotteinen tila ja/tai tämän käsitteen suora kehitys fysiikassa (kehitys, ehkä joskus melko hienostunut, mutta suora, joten voimme sanoa: meidän tavallinen tilaa todella on). Tämä on tila, jossa fyysisten kappaleiden sijainti määräytyy, jossa tapahtuu mekaanista liikettä , erilaisten fyysisten kappaleiden ja esineiden geometrista liikettä .
Erilaisilla abstrakteilla avaruuksilla siinä mielessä, että ne ymmärretään matematiikassa , ei ole mitään tekemistä tavallisen ("fyysisen") tilan kanssa, lukuun ottamatta enemmän tai vähemmän etäisen muodollisen analogian suhdetta (joskus, joissain yksinkertaisissa tapauksissa kuitenkin geneettinen yhteys näkyy myös esimerkiksi nopeusavaruudessa , pulssitila ). Yleensä nämä ovat abstrakteja vektoreita tai lineaarisia avaruuksia , mutta usein ne on varustettu erilaisilla matemaattisilla lisärakenteilla. Fysiikassa termiä avaruus käytetään tässä mielessä pääsääntöisesti välttämättä selventävällä määritelmällä tai lisäyksellä ( nopeusavaruus[ tuntematon termi ] , väriavaruus , tilaavaruus , Hilbert avaruus , spinoriavaruus ) tai ääritapauksissa erottamattomana lauseena abstrakti avaruus . Tällaisia tiloja käytetään kuitenkin melko "maanpäällisten" ongelmien muotoiluun ja ratkaisemiseen tavallisessa kolmiulotteisessa avaruudessa.
Fysiikassa katsotaan myös useita tiloja, jotka ovat ikään kuin väliasemassa tässä yksinkertaisessa luokittelussa, toisin sanoen niitä, jotka tietyssä tapauksessa voivat olla yhteneväisiä tavallisen fyysisen tilan kanssa, mutta yleensä eroavat siitä (kuten konfiguraatioavaruudesta ) tai sisältää tavallista tilaa aliavaruudeksi (kuten vaiheavaruus , aika -avaruus tai Kaluza-avaruus ).
Suhteellisuusteoriassa sen standarditulkinnassa avaruus [2] osoittautuu yhdeksi yksittäisen aika-avaruuden ilmenemismuodoista , ja aika-avaruuden koordinaattien valinta, mukaan lukien niiden jakautuminen tilallisiin ja ajallisiin , riippuu tietyn viitekehyksen valinta [3] . Yleisessä suhteellisuusteoriassa (ja useimmissa muissa painovoiman metrisissä teorioissa ) aika-avaruutta pidetään näennäis-Riemannin moninaisena (tai vaihtoehtoisissa teorioissa jopa yleisempänä) - monimutkaisempina esineinä kuin tasainen avaruus, joka voi toimia fyysinen tila useimmissa muissa fysikaalisissa teorioissa (kuitenkin lähes kaikilla yleisesti hyväksytyillä moderneilla teorioilla on muoto, joka yleistää ne yleisen suhteellisuusteorian pseudo-Riemannin aika-avaruuden tapaukseen, joka on välttämätön elementti nykyaikaisessa standardissa peruskuvassa ).
Useimmilla fysiikan aloilla fyysisen tilan ominaisuudet (ulottuvuus, rajattomuus jne.) eivät millään tavalla riipu aineellisten kappaleiden olemassaolosta tai poissaolosta. Yleisessä suhteellisuusteoriassa käy ilmi, että materiaaliset kappaleet muokkaavat avaruuden ominaisuuksia, tai pikemminkin aika-avaruutta, "käyrää" aika-avaruutta.
Yksi minkä tahansa fysikaalisen teorian (Newton, yleinen suhteellisuusteoria jne.) postulaatti on tietyn matemaattisen avaruuden todellisuuden postulaatti (esimerkiksi Newtonin euklidinen ).
Erilaisia abstrakteja tiloja (termin avaruus puhtaasti matemaattisessa merkityksessä ) tarkastellaan paitsi perusfysiikassa, myös erilaisissa eri aloihin liittyvissä fenomenologisissa fysikaalisissa teorioissa sekä tieteiden risteyksessä (jossa on erilaisia käyttötapoja). nämä tilat ovat melko suuret). Joskus käy niin, että soveltavassa tieteessä käytetyn matemaattisen avaruuden nimi otetaan perusfysiikassa merkitsemään jotakin perusteorian abstraktia tilaa, joka osoittautuu sen kanssa samankaltaiseksi joissakin muodollisissa ominaisuuksissa, mikä antaa termille ja käsitteelle elävyyttä. ja (abstrakti) näkyvyys, tuo sitä ainakin jollain tavalla lähemmäksi jotain arkikokemusta, "populalisoi" sitä. Näin tehtiin esimerkiksi edellä mainitun kvanttikromodynamiikan vahvan vuorovaikutusvarauksen sisäavaruuden osalta , jota kutsuttiin väriavaruudeksi, koska se muistuttaa jossain määrin näön ja polygrafian teorian väriavaruutta .
Sanakirjat ja tietosanakirjat | |
---|---|
Bibliografisissa luetteloissa |