Irrationaaliset luvut ζ (3) - ρ - √ 2 - √ 3 - √ 5 - ln 2 - φ,Φ - ψ - α, δ - e - e π ja π | |
Merkintä | Arvio luvusta δs |
Binääri | 10.0110101000001001111… |
Desimaali | 2,4142135623730950488… |
Heksadesimaali | 2.6A09E667F3BCC908B2F… |
Jatkuva murto-osa |
Hopealeikkaus on matemaattinen vakio , joka ilmaisee tietyn geometrisen suhteen, joka erottuu esteettisesti . Toisin kuin kultaisella leikkauksella , jolla se on nimetty, hopeasuhteella ei ole yhtä määritelmää. Johdonmukaisin on seuraava:
Kaksi arvoa ovat "hopeaosassa", jos pienemmän ja kaksi kertaa suuremman arvon summan suhde suurempaan on sama kuin suuremman arvon suhde pienempään.
Hopeasuhde on irrationaalinen (mutta algebrallinen ) luku, joka on yhtä suuri tai suunnilleen 2,4142135623. Prosenttijaossa käytetään suhdetta, joka on lähellä tätä lukua - 71/29 (ne laskevat yhteen 100).
Ainakin viime aikoina jotkut taiteilijat ja arkkitehdit pitävät tätä asennetta "kauniina". Ehkä ne perustuvat dynaamisten suorakulmioiden Jay Hembridge . Matemaatikot ovat tutkineet hopeasuhdetta antiikin Kreikan tieteen ajoista lähtien (vaikka tällainen nimi on saattanut ilmestyä vasta äskettäin), koska se liittyy luvun 2 neliöjuureen , sen konvergentteihin , neliökolmiolukuihin , Pell-lukuihin , kahdeksankulmioon , jne.
Merkitään edelleen hopealeikkaus läpi (ei ole yleisesti hyväksyttyä merkintää). Yllä olevassa määritelmässä kuvattu relaatio kirjoitetaan algebrallisesti seuraavasti:
Tällä yhtälöllä on yksi positiivinen juuri.
Todiste:Vain juuri on positiivinen .
(sekvenssi A014176 OEIS : ssä )
Oikealla oleva kuva antaa geometrisen todisteen siitä, että kahden juuri on irrationaalinen, kun taas suhteet .
2,4142135623 7309504880 1688724209 6980785696 7187537694 8073176679 7379907324 7846210703 8850387534 3276415727 3501384623 0912297024 9248360558 5073721264 4121497099 9358314132 2266592750 5592755799 9505011527 8206057147 0109559971 6059702745 3459686201 4728517418 6408891986 0955232923 0484308714 3214508397 6260362799 5251407989 6872533965 4633180882 9640620615 2583523950 5474575028 7759961729 8355752203 3753185701 1354374603 4084988471 6038689997 0699004815 0305440277 9031645424 7823068492 9369186215 8057846311 1596668713 0130156185 6898723723 5288509264 8612494977 1542183342 0428568606 0146824720 7714358548 7415565706 9677653720 2264854470 1585880162 0758474922 6572260020 8558446652 1458398893 9443709265 9180031138 8246468157 0826301005 9485870400 3186480342 1948972782 9064104507 2636881313 7398552561 1732204024 5091227700 2269411275 7362728049 5738108967 5040183698 6836845072 5799364729 0607629969 4138047565 4823728997 1803268024 7442062926 9124859052 1810044598 4215059112 02494413 41 7285314781 0580360337 1077309182 8693147101 7111168391 6581726889 4197587165 82152128288 9517284
Tietokoneella lasketut δ s :n 1000 ensimmäistä numeroa vuonna 2008 (1 enemmän kuin √ 2 ) [1] .tämän jatkuvan jakeen (2/1, 5/2, 12/5, 29/12, 70/29, ...) konvergentit ovat peräkkäisten Pell-lukujen suhteita . Nämä murtoluvut antavat hyvät rationaaliset likiarvot hopeasuhteesta, samalla tavalla kuin kultainen suhde on likimääräinen peräkkäisten Fibonacci-lukujen suhteilla .
Äärettömän sisäkkäisten radikaalien muodossa:
Hopeaosalla on muitakin määritelmiä .
Esimerkiksi kultaisen leikkauksen määritelmästä jatkuvaan murto-osaan alkaen kaikkia jatkuvia murtolukuja, joissa nimittäjät ovat vakioita, kutsutaan hopeaksi:
.Irrationaalisia lukuja | ||
---|---|---|
| ||
kultainen leikkaus | ||
---|---|---|
"Kultaiset" hahmot | ||
Muut osiot |
| |
Muut |