Karyotyyppi - tietyn biologisen lajin ( lajin karyotyyppi ), tietyn organismin ( yksittäinen karyotyyppi ) tai solulinjan (klooni) soluille luontaisten täydellisen kromosomisarjan ominaisuuksia (lukumäärä, koko, muoto jne.) . Graafinen esitys karyotyypistä eli joukosta kromosomeja, kun ne on järjestetty ryhmiin muodosta ja koosta riippuen, kutsutaan idiogrammiksi (karyogrammi) [1] . Ei pidä sekoittaa Ideogrammiin .
L. N. Delaunay ehdotti termiä "karyotyyppi" työssään " Muscari Millin lajien vertaileva karyologinen tutkimus. ja Bellevalia Lapeyr ", artikkeli julkaistiin vuonna 1922 Bulletin of the Tiflis Botanical Gardenissa [2] [3] . LN Delaunay määritteli karyotyypin kromosomien joukoksi sarjassa, joka määräytyy niiden lukumäärän, koon ja muodon perusteella [4] . L. N. Delaunay ehdotti, että kaikilla suvun lajeilla on sama kromosomisarja ("karyotyyppi"), eri suvut eroavat Delaunayn mukaan välttämättä karyotyyppisesti [5] . G. A. Levitsky osoitti oman tutkimuksensa perusteella, että tämä ei pidä paikkaansa, ja kirjassaan "Perinnöllisyyden materiaaliset perusteet" hän kehitti ja tarkensi termiä "karyotyyppi" [6] [7] . Cyril Dean Darlington ja Michael J. D. White osallistuivat myös termin kehittämiseen .
Kromosomien ulkonäkö muuttuu merkittävästi solusyklin aikana : interfaasin aikana kromosomit lokalisoituvat ytimeen , yleensä despiralisoituneita ja vaikeasti havaittavia, joten soluja käytetään yhdessä niiden jakautumisen vaiheista, mitoosin metafaasista. karyotyypin määrittämiseksi .
Karyotyypin määritysmenettelyssä voidaan käyttää mitä tahansa jakautuvien solujen populaatiota. Ihmisen karyotyypin määrittämiseen käytetään yleensä perifeerisen veren lymfosyyttejä , joiden siirtyminen G0-lepovaiheesta proliferaatioon provosoituu fytohemagglutiniinimitogeenin lisäämisellä . Luuydinsoluja tai ihon fibroblastien primääriviljelmää voidaan myös käyttää karyotyypin määrittämiseen . Metafaasivaiheessa olevien solujen määrän lisäämiseksi soluviljelmään lisätään vähän ennen kiinnittymistä kolkisiinia tai nokadatsolia jotka estävät mikrotubulusten muodostumisen estäen siten kromatidien leviämisen solunjakautumisen napoihin ja mitoosin loppuunsaattamisen.
Kiinnityksen jälkeen metafaasikromosomivalmisteet värjätään ja valokuvataan; niin sanottu systematisoitu karyotyyppi muodostetaan mikrovalokuvista - numeroitu sarja homologisia kromosomipareja, kun taas kromosomien kuvat on suunnattu pystysuunnassa lyhyet kädet ylöspäin, niiden numerointi tehdään koon alenevassa järjestyksessä, sukupuolikromosomien pari sijoitetaan sarjan loppuun (katso kuva 1).
Historiallisesti ensimmäiset ei-yksityiskohtaiset karyotyypit, jotka mahdollistivat luokittelun kromosomien morfologian mukaan, värjättiin Romanovsky-Giemsan mukaan, mutta kromosomien rakenteen tarkentaminen karyotyypeissä tuli mahdolliseksi kromosomien differentiaalisen värjäyksen myötä. Lääketieteellisessä genetiikassa yleisimmin käytetty tekniikka on kromosomien G-differentiaalinen värjäys.
Klassisen karyotyypin saamiseksi kromosomit värjätään erilaisilla väreillä tai niiden seoksilla: koska värin sitoutuminen kromosomien eri osiin eroaa, värjäytyminen tapahtuu epätasaisesti ja tyypillinen raitarakenne (poikittaismerkkien kompleksi, englantilainen nauha ) muodostuu, mikä heijastaa kromosomin lineaarista heterogeenisyyttä ja on spesifinen homologisille kromosomien pareille ja niiden osille (polymorfisia alueita lukuun ottamatta geenien erilaisia alleelisia variantteja on paikannettu ). Ensimmäisen kromosomivärjäysmenetelmän niin yksityiskohtaisten kuvien saamiseksi kehitti ruotsalainen sytologi Kaspersson (Q-värjäys). [8] Myös muita värjäyksiä käytetään, tällaisia tekniikoita kutsutaan kollektiivisesti differentiaaliseksi kromosomivärjäyksellä: [9]
Viime aikoina on käytetty niin sanottua spektristä karyotyypitystä ( fluorescence in situ hybridisation , englanti Fluorescence in situ hybridization , FISH), joka koostuu kromosomien värjäyksestä fluoresoivilla väriaineilla, jotka sitoutuvat tiettyihin kromosomien alueisiin [10] . Tällaisen värjäyksen seurauksena homologiset kromosomiparit saavat identtiset spektriominaisuudet , mikä paitsi helpottaa suuresti tällaisten parien tunnistamista, myös helpottaa kromosomien välisten translokaatioiden havaitsemista , toisin sanoen osien liikkeitä kromosomien välillä - translokoiduilla osilla on spektri joka eroaa muun kromosomin spektristä.
Klassisen karyotyypityksen tai alueiden, joilla on spesifisiä spektriominaisuuksia, vertaaminen mahdollistaa sekä homologisten kromosomien että niiden yksittäisten alueiden tunnistamisen, mikä mahdollistaa kromosomaalisten poikkeavuuksien - intra- ja interkromosomaalisten uudelleenjärjestelyjen -, joihin liittyy rikkomus , yksityiskohtaisen määrittämisen. kromosomifragmenttien järjestyksessä ( deleetiot , duplikaatiot , inversiot , translokaatiot ). Tällaisella analyysillä on suuri merkitys lääketieteellisessä käytännössä, sillä se mahdollistaa useiden kromosomaalisten sairauksien diagnosoinnin, jotka johtuvat sekä karyotyyppien törkeistä poikkeamista (kromosomien lukumäärän rikkominen) että kromosomaalisen rakenteen rikkomisesta tai solujen karyotyyppien moninaisuudesta. keho ( mosaiikki ).
Sytogeneettisten kuvausten systematisoimiseksi kehitettiin International System for Sytogenetic Nomenclature (ISCN), joka perustuu kromosomien differentiaalivärjäytymiseen ja mahdollistaa yksittäisten kromosomien ja niiden alueiden yksityiskohtaisen kuvauksen. Merkintä on seuraavassa muodossa:
[kromosominumero] [käsivarsi] [paikan numero].[kaistan numero]kromosomin pitkä varsi on merkitty kirjaimella q , lyhyt varsi kirjaimella p , kromosomipoikkeamat on merkitty lisäsymboleilla.
Siten 5. kromosomin lyhyen käsivarren 15. osan 2. vyöhyke kirjoitetaan muodossa 5p15.2 .
Karyotyyppiä varten käytetään ISCN 1995 -järjestelmän [11] merkintää , jonka muoto on seuraava:
[kromosomien lukumäärä], [sukupuolikromosomit], [ominaisuudet] [12] .Sukupuolikromosomien osoittamiseen eri lajeissa käytetään erilaisia symboleja (kirjaimia) riippuen taksonin sukupuolen määrittelyn erityispiirteistä (eri sukupuolikromosomijärjestelmät). Joten useimmissa nisäkkäissä naaras karyotyyppi on homogameettinen ja uros heterogameettinen, vastaavasti naaraan XX , uros - XY sukupuolikromosomien tietue . Linnuissa naaraat ovat heterogameettisia ja urokset homogameettisia, eli naaraan sukupuolikromosomirekisteri on ZW , uros on ZZ .
Seuraavat karyotyypit ovat esimerkkejä:
Koska normaalit karyotyypit ovat lajikohtaisia, eri eläin- ja kasvilajien, pääasiassa koti- ja laboratorioeläinten ja -kasvien karyotyypeistä kehitetään ja ylläpidetään vakiokuvauksia [13] .
Ihmisen normaalit karyotyypit ovat 46,XX (naaras) ja 46,XY (mies). Normaalin karyotyypin rikkomukset ihmisillä tapahtuvat organismin kehityksen varhaisissa vaiheissa: jos tällainen rikkomus tapahtuu gametogeneesin aikana , jossa vanhempien sukusolut tuotetaan, myös niiden fuusion aikana muodostuneen tsygootin karyotyyppi on heikentynyt . . Kun tällainen tsygootti jakautuu edelleen, kaikilla alkion soluilla ja siitä kehittyneellä organismilla on sama epänormaali karyotyyppi.
Yleensä ihmisten karyotyyppihäiriöihin liittyy useita epämuodostumia; useimmat näistä poikkeavuuksista eivät sovi yhteen elämän kanssa ja johtavat spontaaniin aborttiin raskauden alkuvaiheessa. Karyotyyppihäiriöistä johtuvien keskenmenojen osuus raskauden ensimmäisen kolmanneksen aikana on 50-60 %. Näistä häiriöistä 50-60 % on erilaisia trisomioita, 20-25 % polyploidia ja 15-25 % monosomiaa X-kromosomissa, kuitenkin melko suuri määrä sikiöitä (~ 0,5 %), joilla on epänormaalit karyotyypit, kestää loppuun asti. raskaudesta [14] .
Karyotyyppihäiriöitä voi esiintyä myös tsygootin fragmentoitumisen alkuvaiheessa, tällaisesta tsygootista kehittynyt organismi sisältää useita solulinjoja (soluklooneja), joilla on erilaisia karyotyyppejä, tällaista koko organismin tai sen yksittäisten elinten karyotyyppien joukkoa kutsutaan mosaiikkiksi . .
Karyotyypit | Sairaus | Kommentti |
---|---|---|
47,XXY; 48,XXXY; | Klinefelterin oireyhtymä | X-kromosomipolysomia miehillä |
45X0; 45X0/46XX; 45,X/46,XY; 46.X iso (Xq) | Shereshevsky-Turnerin oireyhtymä | Monosomia X-kromosomissa, mukaan lukien mosaiikki |
47,XXX; 48,XXXX; 49,XXXXXX | Polysomia X-kromosomissa | Yleisin trisomia X |
47,XX, 21+; 47,XY, 21+ | Downin oireyhtymä | Trisomia 21. kromosomissa |
47,XX, 18+; 47,XY, 18+ | Edwardsin oireyhtymä | Trisomia 18. kromosomissa |
47,XX, 13+; 47,XY, 13+ | Pataun oireyhtymä | Trisomia 13. kromosomissa |
46,XX, 5p- | itkevän kissan syndrooma | Viidennen kromosomin lyhyen käsivarren poisto |
46 XX tai XY, del 15q11-q13 | Prader-Willin oireyhtymä | Deleetio kromosomin 15 pitkässä haarassa |
Useimmilla organismilajeilla on tyypillinen ja jatkuva kromosomisarja. Diploidisten kromosomien määrä vaihtelee organismista toiseen:
organismi | Latinalainen nimi |
Kromosomien lukumäärä |
Huomautuksia |
---|---|---|---|
Lemurin harmaa | Hapalemur griseus | 54-58 | Madagaskar. lemurit |
tavalliset lemurit | Lemur | 44-60 | Madagaskar. 44, 46, 48, 52, 56, 58, 60 |
Lemur iso rotta | Cheirogaleus major | 66 | Madagaskar. Kääpiölemurit |
hiiren lemurit | mycrosebus | 66 | Madagaskar |
Lori laiha | Loris | 62 | Etelä-Intia, Ceylon. Loriaceae |
lori paksu | Nycticebus | viisikymmentä | Y. Aasia. Loriaceae |
Länsimainen tarsieri | Tarsius bancanus | 80 | Sumatra, Kalimantan. Tarsiers |
Kapusiinien yleinen capuchin-faun |
Cebus capucinus Cebus apella |
54 | Etelä-Amerikka. kapusiinit |
Marmosetti Keltajalkainen marmosetti |
Callithrix jacchus Callithrix flaviceps |
46 | Brasilia. tavalliset marmosetit |
makakit | Macaca | 42 | Aasia, Etelä-Afrikka |
Paviaani musta | Cynopithecus niger | 42 | Sulawesin saari. makakit |
Apinat | Cercopithecus | 54-72 | Afrikka. 54, 58, 60, 62, 66, 68, 70, 72 |
orangutangit | pongo | 48 | Sumatra, Kalimantan |
Simpanssi | Panoroida | 48 | Afrikka |
Gorillat | Gorilla | 48 | Afrikka |
Siamangit | Symphalangus | viisikymmentä | S. Aasia |
Gibboni | Hylobaatit | 44 | S. Aasia |
Ihmisen | Homo sapiens | 46 | Kaikkialla kaikkialla maassa |
organismi | Latinalainen nimi |
Kromosomien lukumäärä |
Huomautuksia | |
---|---|---|---|---|
Koira | Canis lupus familiaris | 78 | [kahdeksantoista] | 76 autosomia, 2 sukupuolikromosomia [19] [20] |
Kissa | Felis catus | 38 | ||
Lehmä | Bos primigenius | 60 | ||
Kotimainen vuohi | Capra aegagrus hircus | 60 | ||
lampaat | Ovis oinas | 54 | ||
Aasi | Equus asinus | 62 | ||
Hevonen | Equus ferus caballus | 64 | ||
Muuli | Mulus | 63 | Aasin ja tamman hybridi. Steriili. | |
Siat | Suidae | 38 | ||
kanit | Leporidae | 44 | ||
Kana | Gallus gallus domesticus | 78 | ||
Kalkkunat | Meleagris | 82 | ||
Maissi | Zea mays | kaksikymmentä | [21] | |
kaura | Avena sativa | 42 | [21] | Tämä on heksaploidi, jossa 2n = 6x = 42. Myös diploideja ja tetraploideja viljellään [21] . |
pehmeä vehnä | Triticum aestivum | 42 | [21] | Tämä laji on heksaploidi, jonka 2n = 6x = 42. Durumvehnä Triticum turgidum var. durum on tetraploidi 2n=4x=28 [21] . |
Ruis | Secale vilja | neljätoista | [21] | |
Riisin kylvö | Oryza sativa | 24 | [21] | |
tavallinen ohra | Hordeum vulgare | neljätoista | [21] | |
Ananas | Ananas comosus | viisikymmentä | [21] | |
Sinimailanen | Medicago sativa | 32 | [21] | Viljelty sinimailas on tetraploidista 2n=4x=32, luonnonvaraisissa muodoissa 2n=16 [21] . |
Palkokasvit | Phaseolus sp. | 22 | [21] | Kaikilla tämän suvun lajeilla on sama määrä kromosomeja, mukaan lukien P. vulgaris, P. coccineus, P. acutifolis ja P. lunatus [21] . |
Herneet | Pisum sativum | neljätoista | [21] | |
Peruna | Solanum tuberosum | 48 | [21] | Se on tetraploidi; villimuodoissa on useammin 2n=24 [21] . |
Tupakka | Nicotiana tabacum | 48 | [21] | Viljelty laji on tetraploidi [21] . |
Retiisi | Raphanus sativus | kahdeksantoista | [21] | |
puutarhakaali | Brassica oleracea | kahdeksantoista | [21] | Parsakaali , kaali, kyssäkaali , ruusukaali ja kukkakaali ovat kaikki samaa lajia ja niillä on sama määrä kromosomeja [21] . |
Puuvilla | Gossypium hirsutum | 52 | [21] | 2n = 4x; Viljelty puuvilla syntyi allotetraploidisaation tuloksena. |
organismi | Latinalainen nimi |
Kromosomien lukumäärä |
Huomautuksia | |
---|---|---|---|---|
talon hiiri | Musiikki lihas | 40 | ||
Rotat | Rattus | 42 | ||
Hiiva | Saccharomyces cerevisiae | 32 | ||
Drosophila kärpänen | Drosophila melanogaster | kahdeksan | [22] | 6 autosomia, 2 sukupuolta |
Sukkulamato | Caenorhabditis elegans | 11, 12 | [23] | 5 paria autosomeja ja pari sukupuoli-X-kromosomia hermaforodiiteilla, 5 paria autosomeja ja yksi X-kromosomi miehillä |
Rezukhovidka Talya | Arabidopsis thaliana | kymmenen |
Tavallisen räsän karyotyyppi vaihtelee 20-33 kromosomista riippuen tietystä populaatiosta [24] .
Sanakirjat ja tietosanakirjat |
---|
Kromosomit | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Main | |||||||||||
Luokitus | |||||||||||
Rakenne |
| ||||||||||
Rakenneuudistus ja rikkomukset | |||||||||||
Kromosomaalisen sukupuolen määritys | |||||||||||
menetelmät |
ihmisen kromosomit | |
---|---|
autosomit | |
gonosomit |