Karboksyylihapot ovat luokka orgaanisia yhdisteitä, joiden molekyylit sisältävät yhden tai useamman COOH -funktionaalisen karboksyyliryhmän . Happamat ominaisuudet selittyvät sillä, että tämä ryhmä pystyy suhteellisen helposti pilkkomaan protoneja . Harvinaisia poikkeuksia lukuun ottamatta karboksyylihapot ovat heikkoja. Esimerkiksi etikkahapon CH 3 COOH dissosiaatiovakio on 1,75⋅10 -5 . Di- ja trikarboksyylihapot ovat vahvempia kuin monokarboksyylihapot.
Kansainvälisen IUPAC-nimikkeistön mukaan karboksyylihapot nimetään valitsemalla pohjaksi pisin -COOH-ryhmän sisältävä hiiliketju ja lisäämällä vastaavan hiilivedyn nimeen pääte " ova " ja sana " happo ". Tässä tapauksessa ensimmäinen numero annetaan hiiliatomille, joka on osa karboksyyliryhmää. Esimerkiksi CH3 - CH2 - COOH on propaanihappo, CH3- C (CH3 ) 2 - COOH on 2,2-dimetyylipropaanihappo.
Rationaalisen nimikkeistön mukaan pääte " karboksyyli " ja sana " happo " lisätään hiilivedyn nimeen, mutta karboksyyliryhmän hiiliatomia ei sisällytetä ketjunumeroon. Esimerkiksi C5H9COOH on syklopentaanikarboksyylihappo, CH3- C (CH3 ) 2 - COOH on tert - butyylikarboksyylihappo.
Monilla karboksyylihapoilla on triviaaleja nimiä (jotkut niistä on lueteltu taulukossa).
Yksiemäksisten tyydyttyneiden karboksyylihappojen nimetTriviaali nimi | IUPAC-nimi | Kaava | Suolojen nimi |
---|---|---|---|
Muurahaishappo | Metaanihappo | HCOOH | formaatteja |
Etikkahappo | Etaanihappo | CH3COOH _ _ | asetaatit |
propionihappo | propaanihappo | C2H5COOH _ _ _ _ | propionaatit |
Voihappo | Butaanihappo | C3H7COOH _ _ _ _ | butyraatit |
Valeriinahappo | Pentaanihappo | C4H9COOH _ _ _ _ | valeraatit |
Kapronihappo | Heksaanihappo | C5H11COOH _ _ _ _ | caprates |
Enantiinihappo | Heptaanihappo | C6H13COOH _ _ _ _ | enantoaatit |
Kapryylihappo | Oktaanihappo | C7H15COOH _ _ _ _ | kaprylaatit |
Pelargonihappo | Nonanoiinihappo | C8H17COOH _ _ _ _ | pelarogata |
kapriinihappo | Dekaanihappo | C9H19COOH _ _ _ _ | vuohia |
Undekyylihappo | undekaanihappo | C10H21COOH _ _ _ _ | undecanoates |
Lauriinihappo | dodekaanihappo | C11H23COOH _ _ _ _ | voittajat |
- | Tridekaanihappo | C12H25COOH _ _ _ _ | tridekanoaatit |
Myristiinihappo | Tetradekaanihappo | C13H27COOH _ _ _ _ | myristiaatit |
- | Pentadekaanihappo | C14H29COOH _ _ _ _ | pentadekanoaatit |
Palmitiinihappo | Heksadekaanihappo | C15H31COOH _ _ _ _ | palmitaatit |
Margarihappo | Heptadekaanihappo | C16H33COOH _ _ _ _ | margaraatit |
Steariinihappo | Oktadekaanihappo | C17H35COOH _ _ _ _ | stearaatit |
- | Nonadekaanihappo | C18H37COOH _ _ _ _ | nonadekanoaatit |
Arakiinihappo | Eikosaanihappo | C19H39COOH _ _ _ _ | Arahats |
- | Henekosaanihappo | C20H41COOH _ _ _ _ | genekosanoaatit |
Beheenihappo | Dokosaanihappo | C21H43COOH _ _ _ _ | behenates |
- | Trikosaanihappo | C22H45COOH _ _ _ _ | trikosanoaatit |
Lignoseriinihappo | Tetrakosaanihappo | C23H47COOH _ _ _ _ | lignoseraatit |
- | Pentakosaanihappo | C24H49COOH _ _ _ _ | pentakosanoaatit |
serotiinihappo | Heksasaanihappo | C25H51COOH _ _ _ _ | todistukset |
- | Heptosaanihappo | C26H53COOH _ _ _ _ | heptosanoaatit |
Montaanihappo | Oktakosaanihappo | C27H55COOH _ _ _ _ | montanoates |
- | Nonakosaanihappo | C28H57COOH _ _ _ _ | nonakosanoaatit |
Melissihappo | Triakontaanihappo | C29H59COOH _ _ _ _ | sitruunavoide |
- | Gentriakontaanihappo | C30H61COOH _ _ _ _ | hentriakontanoaatit |
Laseriinihappo | dotriakontaanihappo | C31H63COOH _ _ _ _ | dotriacontanoates |
Psyllosteariinihappo | Tritriakontaanihappo | C32H65COOH _ _ _ _ | psylastearylaatit |
Heddiinihappo | Tetratriakontaanihappo | C33H67COOH _ _ _ _ | - |
Ceroplastinen happo | Pentatriakontaanihappo | C34H69COOH _ _ _ _ | - |
Heksatriakontyylihappo | Heksatriakontaanihappo | C35H71COOH _ _ _ _ | - |
Triviaali nimi | IUPAC-nimi | Kaava | Suolojen nimi |
---|---|---|---|
Akryylihappo | propeenihappo | C2H3COOH _ _ _ _ | Akrylaatit |
Isokrotoninen (kvartenyyli)happo | cis-2-buteenihappo | C3H5COOH _ _ _ _ | - |
Krotonihappo | trans-2-buteenihappo | C3H5COOH _ _ _ _ | - |
Vinyylietikka (aliliini) happo | 3-buteenihappo | C3H5COOH _ _ _ _ | - |
Allyylietikkahappo | 4-penteenihappo | C4H7COOH _ _ _ _ | - |
Isohydrosorbinen | trans-2-hekseenihappo | C5H9COOH _ _ _ _ | - |
p-propenyylipropionihappo | 4-hekseenihappo | C5H9COOH _ _ _ _ | - |
Kaproleiinihappo | 9-dekeenihappo | C10H19COOH _ _ _ _ | - |
Laurolihappo | cis-9-dodekeenihappo | C11H21COOH _ _ _ _ | - |
Myristoleiinihappo | cis-9-tetradekeenihappo | C13H25COOH _ _ _ _ | - |
Palmitoleiinihappo | cis-9-heksadekeenihappo | C15H29COOH _ _ _ _ | - |
Sapieniinihappo | cis-6-heksadekeenihappo | C15H29COOH _ _ _ _ | - |
Vatsenoiinihappo | trans-11-oktadekeenihappo | C17H33COOH _ _ _ _ | - |
petroseliinihappo | cis-6-oktadekeenihappo | C17H33COOH _ _ _ _ | - |
Petroselandiinihappo | trans-6-oktadekeenihappo | C17H33COOH _ _ _ _ | - |
Öljyhappo | cis-9-oktadekeenihappo | C17H33COOH _ _ _ _ | - |
Elaidiinihappo | trans-9-oktadekeenihappo | C17H33COOH _ _ _ _ | - |
cis-rokotehappo | cis-11-oktadekeenihappo | C17H33COOH _ _ _ _ | - |
trans-rokotehappo | trans-11-oktadekeenihappo | C17H33COOH _ _ _ _ | - |
Gadoleiinihappo | cis-9-eikseenihappo | C19H37COOH _ _ _ _ | - |
Gondoiinihappo | cis-11-eikseenihappo | C19H37COOH _ _ _ _ | - |
Pauliinihappo | cis-13-eikseenihappo | C19H37COOH _ _ _ _ | - |
Brassidiinihappo | trans-13-dosenoiinihappo | C21H41COOH _ _ _ _ | - |
Erukahappo | cis-13-dosenoiinihappo | C21H41COOH _ _ _ _ | - |
Cetoleiinihappo | cis-11-dosenoiinihappo | C21H41COOH _ _ _ _ | - |
Nervonihappo (selakolihappo). | cis-15-tetrakoseenihappo | C23H45COOH _ _ _ _ | - |
Ximeniinihappo | 17-heksakoseeni | C25H49COOH _ _ _ _ | - |
Lumeceiinihappo | 21-triakonteeni | C29H57COOH _ _ _ _ | - |
Sorbiinihappo | trans, trans-2,4-heksadieenihappo | C5H7COOH _ _ _ _ | - |
Tuatariinihappo | trans, cis-4,6-oktadieenihappo | C7H11COOH _ _ _ _ | - |
Stillingiinihappo | cis, cis-2,4-dekadieenihappo | C9H15COOH _ _ _ _ | - |
Linolihappo | cis, cis-9,12-oktadekadieenihappo | C17H31COOH _ _ _ _ | |
Rumeniini (bovic) happo | cis, trans-9,11-oktadekadieenihappo | C17H31COOH _ _ _ _ | |
Linelaidiinihappo | trans, trans-9,12-oktadekadieenihappo | C17H31COOH _ _ _ _ | |
Chiragonihappo | cis, cis, cis-6,10,14-heksadekatrieenihappo | C15H25COOH _ _ _ _ | |
Puunihappo | cis, trans, cis-9,11,13-oktadekatrienihappo | C17H29COOH _ _ _ _ | - |
α-linoleenihappo | cis, cis, cis-9,12,15-oktadekatrienoinen | C17H29COOH _ _ _ _ | - |
Linoleenihappo | trans-, trans-, trans-9,12,15-oktadekatrieninen | C17H29COOH _ _ _ _ | - |
γ-linoleenihappo (gamaleenihappo). | cis, cis, cis-6,9,12-oktadekatrienihappo | C17H29COOH _ _ _ _ | - |
Puunihappo | cis, trans, cis-6,9,12-oktadekatrienihappo | C17H29COOH _ _ _ _ | - |
α-eleosteariinihappo | cis, trans, trans-9,12,15-oktadekatrienoinen | C17H29COOH _ _ _ _ | - |
β-eleosteariinihappo | trans-, trans-, trans-9,12,15-oktadekatrieninen | C17H29COOH _ _ _ _ | - |
Pinoleenihappo | cis, cis, cis-5,9,12-oktadekatrienihappo | C17H29COOH _ _ _ _ | - |
α-kalenterihappo | trans, trans, cis-8,10,12-oktadekatrienihappo | C17H29COOH _ _ _ _ | - |
katalpiinihappo | trans-, trans-, cis-9,11,13-oktadekatrienihappo | C17H29COOH _ _ _ _ | - |
Eleosteariinihappo | cis, trans, trans-9,11,13-oktadekatrienihappo | C17H29COOH _ _ _ _ | - |
Midiinihappo | cis, cis, cis-5,8,11-eikosatrieenihappo | C19H33COOH _ _ _ _ | - |
Dihomo-y-linoleenihappo | cis, cis, cis-8,11,14-eikosatrieenihappo | C19H33COOH _ _ _ _ | - |
Stearidonihappo | cis, cis, cis, cis-6,9,12,15-oktadekatetraeenihappo | C17H27COOH _ _ _ _ | - |
Arakidonihappo | cis, cis, cis, cis-6,9,12,15-eikosatetraeenihappo | C19H31COOH _ _ _ _ | - |
α-parinaarihappo | cis, trans, trans, cis-9,11,13,15-oktadekatetraeenihappo | C17H27COOH _ _ _ _ | - |
Adrenihappo | cis, cis, cis, cis-7,10,13,16-dokosatetraeenihappo | C21H35COOH _ _ _ _ | - |
Timnodonihappo | cis, cis, cis, cis, cis-5,8,11,14,17-eikosapentaeenihappo | C19H29COOH _ _ _ _ | - |
klapanodonihappo | cis, cis, cis, cis, cis-7,10,13,16,19-dokosapentaeenihappo | C21H33COOH _ _ _ _ | - |
zirvonihappo | cis, cis, cis, cis, cis, cis-4,7,10,13,16,19-dokosaheksaeenihappo | C21H31COOH _ _ _ _ | - |
Nisiinihappo | cis, cis, cis, cis, cis, cis-6,9,12,15,18,21-tetrakosaheksaeenihappo | C23H35COOH _ _ _ _ | - |
Triviaali nimi | IUPAC-nimi | Kaava | Suolojen nimi |
---|---|---|---|
Oksaalihappo | Etandiohappo | HOOCCOOH | oksalaatit |
Malonihappo | propaanidihappo | HOOCCH 2 COOH | malonaatit |
meripihkahappo | Butaanidihappo | HOOC(СH 2 ) 2 COOH | sukkinaatit |
Glutaarihappo | Pentaanidihappo | HOOC(СH 2 ) 3 COOH | glutaraatit |
Adipiinihappo | Heksaanidihappo | HOOC(СH 2 ) 4 COOH | adipaatit |
pimeliinihappo | Heptaanidihappo | HOOC(СH 2 ) 5 COOH | pimelinaatit |
Subiinihappo | Oktaanidihappo | HOOC(СH 2 ) 6 COOH | suberaatit |
Azelaiinihappo | Nonandioiinihappo | HOOC(СH 2 ) 7 COOH | Azelainaatit |
Sebasiinihappo | Dekandihappo | HOOC(СH 2 ) 8 COOH | sebakaatit |
- | Undekaanihappo | HOOC(СH 2 ) 9 COOH | |
- | Dodekaanidihappo | HOOC(СH 2 ) 10 COOH | |
Brassiilihappo | Tridekaanidihappo | HOOC(СH 2 ) 11 COOH | |
- | Tetradekaanidihappo | HOOC(СH 2 ) 12 COOH | |
- | Pentadekaanidihappo | HOOC(СH 2 ) 13 COOH | |
thapsia happo | Heksadekandihappo | HOOC(СH 2 ) 14 COOH | |
- | Heptadekaanidihappo | HOOC(СH 2 ) 15 COOH | |
- | Oktadekaandihappo | HOOC(СH 2 ) 16 COOH | |
- | Nonadekaandihappo | HOOC(СH 2 ) 17 COOH | |
- | Eikosandioiinihappo | HOOC(СH 2 ) 18 COOH | |
Japanilainen happo | Henekosandioiinihappo | HOOC(СH 2 ) 19 COOH |
Karboksyyliin liittyvästä radikaalista riippuen erotetaan seuraavat karboksyylihapporyhmät:
Karboksyyliryhmien lukumäärän mukaan hapot voivat olla:
Kun happomolekyyleihin lisätään muita funktionaalisia ryhmiä (esimerkiksi -OH, \u003d CO, -NH2 jne .), muodostuu hydroksi- , keto- , aminohappoja ja muita yhdisteluokkia.
Etikkahappo on ollut ihmisten tiedossa antiikista lähtien. Puun saaminen kuivatislauksella (kuumennus ilman pääsyä ilmaan) on kuvattu John Glauberin ja Robert Boylen kirjoituksissa. Tämän aineen luonne tiedettiin kuitenkin vasta 1800-luvulla. Alkemistit uskoivat, että viinin käymisen aikana viinialkoholi muuttuu etikaksi ottamalla vastaan suola-tartraatti ( kaliumvetytartraatti ) hiukkasia. Vielä 1700-luvulla käyminen selitettiin viinin happamien ja palavien periaatteiden yhdistelmällä. Vasta vuonna 1814 Jakob Berzelius määritti etikkahapon koostumuksen, ja vuonna 1845 saksalainen kemisti Adolf Wilhelm Hermann Kolbe suoritti sen täydellisen synteesin hiilestä [1] .
Englantilainen luonnontieteilijä John Ray sai muurahaishapon ensimmäisen kerran vuonna 1670 kuumentamalla muurahaisia tislauskolvissa [1] .
Erilaiset karboksyylihapot ovat hyvin yleisiä luonnossa.
Yksinkertaisin niistä, akryyli , on pistävä haju (latinaksi acris - terävä, syövyttävä), joka saadaan kuivattamalla glyserolia (kun rasvat palavat ). Nimi krotonihappo tulee Croton tiglium -kasvista , jonka öljystä se eristettiin. Enkelihappo eristettiin angelica-öljystä , joka oli saatu angelica officinalis -kasvin ( Angelica archangelica tai Archangelica officinalis ) - angelica, alias angelica - juuresta. Ja tiglinovaya - samasta öljystä Croton tigliumas krotonihappo, vain nimetty tämän kasvitieteellisen termin toisen osan mukaan. Sorbiinihappoa saatiin pihlajamarjoista (latinaksi - Sorbus ). Erukahappoa on eristetty rucola (Eruca) -kasvin öljystä , joka on samassa Brassicaceae -heimossa kuin kaali, ja rypsiöljystä . Pitkäaikaisessa lämmityksessä rikkihapolla erukahappo isomeroituu brassidiiniksi .
Yleisin suuren molekyylipainon omaavista tyydyttymättömistä hapoista on öljyhappo . Se on isomeerinen elaidiinihapon kanssa . Hapoilla, joissa on useita kaksoissidoksia, on suurin biologinen aktiivisuus: linolihappo kahdella, linoleenihapolla kolme ja arakidonihapolla neljällä. Ihmiskeho ei pysty itse syntetisoimaan monityydyttymättömiä happoja, vaan sen on saatava ne valmiina ruoan kanssa. Näiden happojen nimet tulevat kreikasta. elaion ja lat. oleum on öljyä, ja nimi arakidoni (kuten arachid ) tulee maapähkinöistä. Tyydyttymätön risinoleiinihappo on eristetty risiiniöljystä , jota löytyy risiinipavun ( Ricinus communis ) siemenistä. Toinen tyydyttymätön kolmiemäksinen akoniittihappo eristettiin ranunculus -heimon myrkyllisistä kasveista Aconite , ja tyydyttymättömän kaksiemäksisen itakonihapon nimi saatiin yksinkertaisesti järjestämällä kirjaimet uudelleen akoniittihapon nimessä.
Amerikkalaisen trooppisen puun Tariri antidesma [2] karvasuutteesta on eristetty asetyleenitervahappoa .
Maitohappoa muodostuu sokereiden maitohappokäymisen aikana (maidon hapan sekä viinin ja oluen käymisen aikana).
Omena , viinihappo , sitruuna , cinchona - muodostuvat hedelmäsolujen tyhjiöissä glukoosin osittaisen hapettumisen aikana [1] .
Hydrolyysi
Hapolla tai emäksellä katalysoitu; aluksi muodostuu amidi, joka hydrolysoituu hapoksi; vain harvoissa tapauksissa amidi kestää hydrolyysiä (amidi hydrolysoituu helposti H202:n läsnä ollessa emäksisessä ympäristössä tai nitriitti-ionin läsnä ollessa happamassa ympäristössä) ; kätevä laboratoriomenetelmä (jos nitriiliä on saatavilla).
Aromaattisten happojen synteesi
On olemassa useita erityisiä menetelmiä, joita käytetään vain aromaattisten happojen synteesiin.
Muut menetelmät
Sitä käytetään happojen korkeampien homologien saamiseksi alemmista.
a. aldehydejä saadaan ja hapetetaan vastaaviksi hapoiksi.
b. saadaan alkoholeja ja sitten ne sulatetaan 250-350 °C:ssa alkalin kanssa [5] :
sisään. olefiinien vuorovaikutus hiilimonoksidin (II) ja vesihöyryn kanssa nikkelitetrakarbonyylin tai fosforihapon läsnä ollessa 300-400 °C:n lämpötilassa ja 200-500 ilmakehän paineessa, normaali- ja iso-rakenteisten happojen seos on saatu esimerkiksi:
Alemmat hapot, joissa on jopa 3 hiiliatomia, ovat helposti liikkuvia, värittömiä nesteitä, joilla on tyypillinen pistävä haju, sekoittuvia veteen missä tahansa suhteessa. Useimmat hapot, joissa on 4-9 hiiliatomia, ovat öljyisiä nesteitä, joilla on epämiellyttävä haju. Hapot, joissa on suuri määrä hiiliatomeja, ovat kiinteitä aineita, jotka eivät liukene veteen. Muurahais- ja etikkahappojen tiheys on suurempi kuin yksi, loput pienempi. Kiehumispiste kohoaa molekyylipainon kasvaessa; samalla hiiliatomien lukumäärällä normaalirakenteiset hapot kiehuvat korkeammassa lämpötilassa kuin iso-rakenteen omaavat hapot [6] .
Normaalirakenteisilla hapoilla on kuvio: happojen, joissa on parillinen määrä atomihiiltä, sulamispiste on korkeampi kuin viereisten parittomien happojen sulamispiste. Tämä johtuu metyyli- ja karboksyyliryhmien sijainnista - parillisissa hapoissa ne ovat molekyylin akselin vastakkaisilla puolilla, ja parittomissa - yksi kerrallaan. Symmetrisemmästä rakenteesta johtuen happomolekyylit, joissa on parillinen määrä hiiliatomeja, ovat voimakkaammin vuorovaikutuksessa toistensa kanssa kidehilassa ja sitä on vaikeampi tuhota kuumennettaessa [6] .
Karboksyylihapot kiehuvat paljon korkeammissa lämpötiloissa kuin alkoholit. Niiden molekyylit assosioituvat paljon vahvemmin johtuen siitä, että niissä olevat sidokset ovat suuremmassa määrin polarisoituneita tyypin mukaan . Lisäksi karboksyylihapoilla on mahdollisuus muodostaa vetysidoksia karbonyylidipolin hapen kanssa , jolla on merkittävä elektronegatiivisuus, eikä vain toisen hydroksyyliryhmän hapen kanssa. Itse asiassa kiinteässä tilassa karboksyylihapot esiintyvät pääasiassa syklisten dimeerien muodossa [2] [5] , kun taas nestemäisessä tilassa tapahtuu myös lineaarista assosiaatiota [7] . Jopa pareittain ne ovat dimerisoituneet [6] . Kaksi vetysidosta ovat melko vahvoja, muurahaishapon dimerisaatioenergia on 14 kcal/mol [4] .
Karboksyyliryhmä on tasomainen, C=O-sidoksen pituus eri hapoissa on 0,118-0,126 nm, CO-sidos on 0,121-0,137 nm - dissosiaatiossa hiili-happisidoksen pituudet kohdistetaan [8] . Karboksyyliryhmän hiili on sp 2 -hybridisaatiotilassa , OCO-kulma eri hapoissa on 118-122,5°. Karboksyyliryhmän dipolimomentti on ~5,4⋅10 −30 C m . Dissosiaation aikana muodostuu konjugaatiolla stabiloitu anioni. Siinä molemmat CO-sidokset ovat ekvivalentteja ja ovat 0,127-0,129 nm [8] .
Dimeerin vetysidoksen pituus on 0,26 nm [5] .
Karboksyylihapot ovat heikkoja happoja, useimpien alifaattisten happojen pKa on 4,8. Elektroneja vetävät substituentit ja useat sidokset parantavat happamia ominaisuuksia, kun taas elektroneja luovuttavat substituentit päinvastoin heikentävät (tosin paljon pienemmässä määrin) [5] . Substituentin vaikutus putoaa nopeasti etäisyydellä karboksyyliryhmästä [4] .
Karboksyylihappojen dissosiaatioaste riippuu olennaisesti liuottimen luonteesta. Aproottisissa liuottimissa karboksyylihapot ovat käytännössä dissosioitumattomia. Proottisissa liuottimissa suurin dissosiaatio havaitaan vedessä [8] .
Joidenkin karboksyylihappojen pKa - arvot vedessä 25 °C:ssa [4]Nimi | p K a | Nimi | p K a |
---|---|---|---|
CF3COOH _ _ | 0,23 | СCl3COOH _ _ | 0,64 |
CHCl2COOH _ _ | 1.26 | CH2NO2COOH _ _ _ _ | 1.48 |
CF3SO2CH2COOH _ _ _ _ _ _ | 1.88 | CH3SO2CH2COOH _ _ _ _ _ _ | 2.36 |
NCCH2COOH _ _ | 2.47 | CH2FCOOH _ _ | 2.59 |
CH2ClCOOH _ _ | 2.86 | CH2BrCOOH _ _ | 2.90 |
CH 2 ICOOH | 3.18 | CH2OHCOOH _ _ | 3.83 |
C6H5CH2CH2COOH _ _ _ _ _ _ _ _ | 4.66 | CH3C≡C - COOH | 1.84 |
CH≡C-COOH | 2.62 | CH2CHCOOH _ _ | 4.65 |
trans- CH3CH=CH- COOH | 4.68 | trans- C6H5CH = CH - COOH | 4.44 |
o - CH3OC6H4COOH _ _ _ _ | 4.08 | m - CH3OC6H4COOH _ _ _ _ | 4.10 |
p - CH3OC6H4COOH _ _ _ _ | 4.50 | ( CH3 ) 3C6H4COOH _ _ _ _ _ | 4.20 |
p- ( CH3 ) 3C6H4COOH _ _ _ _ | 4.38 | p - FC6H4COOH _ _ | 4.15 |
p - ClC6H4COOH _ _ | 4.00 | HCOOH | 3.75 |
CH3COOH _ _ | 4.74 | CH3CH2COOH _ _ _ _ | 4.87 |
CH3CH2CH2COOH _ _ _ _ _ _ | 4.81 | CH3CH ( CH3 ) COOH | 4.84 |
( CH3 ) 3CCOOH _ | 5.03 | C6H5COOH _ _ _ _ | 4.2 |
o - CH3C6H4COOH _ _ _ _ | 3.91 | m - CH3C6H4COOH _ _ _ _ | 4.25 |
p - CH3C6H4COOH _ _ _ _ | 4.37 | o - O2NC6H4COOH _ _ _ _ | 2.17 |
m - O2NC 6H4COOH _ _ _ | 3.46 | p - O2NC6H4COOH _ _ _ _ | 3.43 |
C6F5COOH _ _ _ _ | 1.75 | 2,4,6- ( 02N ) 3C6H2COOH _ _ _ _ | 0,65 |
happojäännös | Nimi | ||
---|---|---|---|
asyyliryhmä | otsikko | asylaattiryhmä | |
H-CO¯ | Formyl | H-COO¯ | Muotoile |
CH3 - CO¯ | Asetyyli | CH 3 -COO¯ | Asetaatti |
CH3CH2 - CO _ _ | Propionil | CH3CH2 - COO¯ _ _ | Propionaatti |
CH3CH2CH2 - CO _ _ _ _ | Butyril | CH3CH2CH2 - COO¯ _ _ _ _ | Butyraatti |
C3H7 - CO _ _ | Isobutyryyli | C3H7 - COO¯ _ _ | Isobutyraatti |
CH3 ( CH2 ) 3 - CO1 | Valeril | CH3 ( CH2 ) 3 - COO | Valeraatti |
С 6 H 5 -СО¯ | Bentsoyyli | C6H5 - COO¯ _ _ | Bentsoaatti |
Karboksyylihapoilla on tyypillisiä happamia ominaisuuksia - reagoidessaan metallien, niiden oksidien tai emäksisten hydroksidien kanssa ne muodostavat vastaavien metallien suoloja, voivat syrjäyttää heikomman hapon suolastaan ja voivat itse syrjäytyä vahvemmalla hapolla:
Vedessä olevat karboksyylihappojen suolat hydrolysoituvat ja niillä on alkalinen reaktio.
Karboksyylihapot pelkistetään primäärisiksi alkoholeiksi litiumalumiinihydridillä refluksoitaessa tetrahydrofuraanissa tai diboraanissa miedommissa olosuhteissa, lisäksi NO 2- , COOR- ja CN -ryhmät eivät pelkisty [4] :
Selektiivinen pelkistys aldehydeiksi saavutetaan käsittelemällä Li metyyliamiinissa (syntyvä aldehydi suojataan liuottimella atsometiinin muodossa) [5] :
Happojen radikaalihalogenointi kloorilla säteilytettäessä UV-valolla 300–400°C:ssa etenee epäselektiivisesti ja johtaa vaikeasti erotettavaan isomeeriseokseen. Regioselektiivinen α-halogenointi saadaan aikaan Gell-Volhard-Zelinsky-menetelmällä - happoa käsitellään kloorilla tai bromilla punaisen fosforin tai vastaavan fosfori(III) kloridin tai -bromidin läsnä ollessa [4] .
Nukleofiilisissä substituutioreaktioissa sp2 - hybridiasyylihiiliatomissa tapahtuu kaksivaiheinen additio-eliminaatiomekanismi. Ensimmäisessä vaiheessa nukleofiilinen aine lisätään karboksyylihappoon (tai sen johdannaiseen) varautuneen ( anionisen nukleofiilisen aineen) tai varautumattoman (neutraalin) tetraedrisen välituotteen muodostamiseksi. Toisessa vaiheessa poistuva ryhmä Z lohkeaa tästä välituotteesta anionin tai neutraalin molekyylin muodossa ja muodostuu lopullinen additiotuote. Reaktio on palautuva , mutta jos Z- ja Nu- eroavat suuresti emäksisyydeltään ja nukleofiilisyydestään, siitä tulee irreversiibeli [ 4] .
Veden vapautuminen johtuu hapon karboksyyliryhmän hydroksyylistä ja alkoholin hydroksyylin vetyatomista. Samaan aikaan, kun käytettiin 180:lla leimattua happoa karbonyylissä , havaittiin aktiivisuuden menetys. Tämä osoittaa, että myös karbonyylihappiatomi vaikuttaa reaktioon [8] .
Kaksiemäksiset meripihka- ja glutaarihapot muuttuvat helposti sisäisiksi anhydrideiksi kuumennettaessa [7] .
Keteenit ovat sisäisiä happoanhydridejä. Niitä saadaan pääasiassa eliminoimalla happoklorideja. Keteeniä voidaan saada etikkahapon ja etikkahappoanhydridin pyrolyysillä [5] [8] .
Kuumennettaessa karboksyylihappojen ammoniumsuolat muodostavat amideja :
Kun amideja kuumennetaan P 2 O 5 :lla , vesi hajoaa ja muodostuu happamia nitriilejä :
Borodin-Hunsdicker-reaktio - karboksyylihapon hopeasuola muuttuu, kun sitä kuumennetaan bromiliuoksella CCl 4 :ssä, alkyylihalogenidiksi [4] :
Hapetus-dekarboksylointi lyijytetra-asetaatilla tuottaa alkaaneja , alkeeneja tai etikkahappoestereitä olosuhteista riippuen :
Karbokationi, joka halkaisee protonin, muuttuu alkeeniksi ja sieppaa asetanionin eetteriksi [4] .
Kolbe-reaktio on sähkökemiallinen reaktio hiilivetyjen saamiseksi karboksyylihapoista [4] :
Schmidtin reaktio - reagoidessaan hydratsoehapon kanssa muodostuu amiineja (välituote on isosyanaatti ) ja vapautuu hiilidioksidia :
Kuumennettaessa bariumhydroksidin läsnäollessa karboksyylihapot (sekä niiden kalsium- ja bariumsuolat) dekarboksyloidaan muodostaen symmetrisiä ketoneja. Juuri tämä reaktio on pitkään ollut tärkein menetelmä asetonin saamiseksi [9] :
Esimerkki tämän tyyppisestä molekyylinsisäisestä reaktiosta on syklopentanonin tuotanto adipiinihapon pyrolyysillä ja sykloheksanonin valmistus pimelihapon pyrolyysillä barium- tai kalsiumsuolan läsnä ollessa ( Ruzicka-syklisointi ) [7] .
Yksinkertaisimmat kaksiemäksiset hapot ( oksaali- ja malonihappo ) ovat termisesti epästabiileja ja helposti dekarboksyloituvia [7] :
Karboksyylihappojen IR-spektreissä esiintyy kaksi ominaista absorptiokaistaa, jotka liittyvät hydroksyyliryhmän venytysvärähtelyihin - 3550–3500 cm – 1 vapaalle ja 3330–2500 cm – 1 vetysidokselle ja karboksyylille – 1725–1700 cm – 1 alifaattisille hapoille, 1715-1690 cm - 1 α,β-tyydyttymättömille, 1700-1680 cm- 1 aromaattisille ja 1680-1650 cm - 1 molekyylin sisäisille vetysidoksille. Karboksylaattianionilla on kaksi absorptiokaistaa, 1610–1550 cm– 1 ja 1420–1335 cm– 1 [5] [8] .
Karboksyylihappojen massaspektreissä asyylisidoksen katketessa muodostuneiden asyylikationien piikit ovat voimakkaimpia. Alkyyliradikaali häviää myös, kun muodostuu CO 2 H + -ioni m/z = 45, α- ja β-katkaisu ja uudelleenjärjestelyt niille, jotka sisältävät H-atomin y-asemassa, Mac- Lafferty uudelleenjärjestely on ominaista. Normaaleille karboksyylihapoille on tunnusomaista ionihuippu, jonka m/z=60 vastaa etikkahappoa [8] [10] .
UV-spektrissä on heikkoja n → π* -siirtymän vyöhykkeitä 200–210 nm:ssä. α,β-rajoittamattomalle π→π*-siirtymän vahvemmat vyöhykkeet 210–220 nm:ssä ovat ominaisia [5] .
NMR-spektreille on tunnusomaista karboksyyliryhmän protonin kemiallinen siirtymä 10,5-12 ppm:ssä. [5] .
Karboksyylihapot ovat lähtöaineita orgaanisen synteesin välituotteiden, erityisesti keteenien , happohalogenidien , vinyyliestereiden ja halogeenihappojen valmistukseen. Karboksyylihappojen ja alkalimetallien suoloja käytetään saippuoina , emulgointiaineina ja voiteluöljyinä ; raskasmetallien suolat - kuivausaineet , hyönteisten ja sienitautien torjunta - aineet , katalyytit . Happojen esterit - elintarvikelisäaineet , liuottimet ; glykolien ja polyglykolien mono- ja diesterit - pehmittimet , lakkojen ja alkydihartsien komponentit; Selluloosaeetterit ovat lakkojen ja muovien komponentteja. Happoamidit ovat emulgointiaineita ja vaahdotusaineita.
Muurahaishappo on voimakas pelkistävä aine ja sillä on voimakas bakterisidinen vaikutus. Sen käyttö lääketieteessä perustuu näihin ominaisuuksiin (käytetään muurahaisalkoholia - muurahaishapon 1,25-prosenttista alkoholiliuosta), säilöntäaineena (vihermassaa ja hedelmämehuja säilöttäessä) ja desinfiointiin. Sitä käytetään myös nahan käsittelyyn sekä tekstiilien ja paperin viimeistelyyn. Muurahaishappoestereitä käytetään laajasti - metyyliformiaattia , etyyliformiaattia ja isoamyyliformiaattia [11] .
Etikkahappo - elintarvike- ja kemianteollisuudessa ( selluloosa-asetaatin tuotanto , josta saadaan asetaattikuitua , orgaanista lasia , kalvoa ; väriaineiden, lääkkeiden ja esterien synteesiin). Kotitaloudessa aromi- ja säilöntäaineena. Teollisuudessa - liuotin lakkoille, koagulantti lateksille, asetyloiva aine [12] .
Voihappo - aromilisäaineiden ( metyylibutyraatin ja isoamyylibutyraatin esterit - aromit teollisuudessa), pehmittimien ja vaahdotusreagenssien valmistukseen maa-alkalimetallien uuttoaineena. [13]
Oksaalihappo - metallurgisessa teollisuudessa ( kalkinpoisto ), peittausaineena värjäyksessä, olkien valkaisussa, musteen valmistuksessa, reagenssina analyyttisessä orgaanisessa kemiassa [14] .
Steariini C 17 H 35 COOH ja palmitiinihappo C 15 H 31 COOH - pinta-aktiivisina aineina (natriumsuola), voiteluaineina metallintyöstössä, voiteiden ja voiteiden komponenttina ja emulgaattorina. Esterit ovat antioksidantteja, ruoan stabilointiaineita, liimapastan komponentteja sekä tekstiilien ja nahan käsittelyyn [15] .
Öljyhappo C 17 H 33 COOH on vaahdotusaine ei-rautametallimalmien rikastuksessa.
![]() | |
---|---|
Bibliografisissa luetteloissa |
|
Orgaanisten yhdisteiden luokat | |
---|---|
hiilivedyt | |
Happipitoinen | |
Typpeä sisältävä | |
Rikki | |
Fosforia sisältävä | |
haloorgaaninen | |
organopiitä | |
Organoelementti | |
Muut tärkeät luokat |